当前位置:新励学网 > 建筑专业 > 求空间曲线的参数方程

求空间曲线的参数方程

发表时间:2024-07-22 12:25:55 来源:网友投稿

空间曲线的参数方程为:{x=t-sint,y=1-cost,z=4sin(t/2) ,

分别对t求导,得 x '=1-cost,y '=sint,z '=2cos(t/2) ,

将 t0=π/2 分别代入,可得切点坐标为(π/2-1,1,2√2),

切线方向向量 v=(1,1,√2),

所以切线方程为 (x-π/2+1)/1=(y-1)/1=(z-2√2)/√2 ,

法平面方程为 1*(x-π/2+1)+1*(y-1)+√2*(z-2√2)=0 。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!