当前位置:新励学网 > 建筑专业 > 半导体二极管的正向伏安(V-A) 特性是一条::()。

半导体二极管的正向伏安(V-A) 特性是一条::()。

发表时间:2024-07-22 15:23:08 来源:网友投稿

半导体二极管的正向伏安(V-A) 特性是一条:()。

A、过坐标轴零点的直线

B、过坐标轴零点,|随U按指数规律变化的曲线

C、正向电压超过某- 数值后才有电流的直线

D、正向电压超过某-数值后|随U按指数规律变化的曲线

参考答案

【正确答案:D】

二极管是非线性元件,伏安特性如下图所示。

由于半导体性质决定当外加正向电压高于某一数值 (死区电压)以后,电流随电压按指数规律变化。因此只有答案D正确。

请通俗的讲讲二极管的伏安特性

1、二极管伏安的正向特性,理想的二极管,正向电流和电压成指数关系。 但是实际的二极管,加正向电压的时候,需要克服PN结内电压,所以电压要大于内电压时,才会出现电流。

这个最小电压称作开启电压。小于开启电压的区域,叫做死区。 当电压大于开启电压,那么电流成指数关系上升。增加很快所以二极管上的压降,其实很小,否则由于电流太大,就烧坏了。

2、二极管伏安的反向特性,理想的二极管,不论反向电压多大,反向都无电流。实际的二极管,反向截止时,也是有电流的,这个电流叫做反向饱和电流。在电压没有达到反向击穿电压时,二极管的电流一直等于方向饱和电流。

但是当电压大到一定程度,二极管被反向击穿,电流急剧增大。 反向击穿分齐纳击穿和雪崩击穿两种。 有的二极管击穿后撤去反向电压,还能恢复原状态,比如稳压二极管就是工作在反向击穿区的。 有的反向击穿就直接烧坏了。

3、二极管的伏安特性存在4个区:死区电压、正向导通区、反向截止区、反向击穿区。

(1)死区电压:通常为,锗管0.2~0.3V,硅管0.5~0.7V;

(2)正向导通区当加正向电压超过死区电压时则导通,该区为正向导通区;

(3)反向截止区加一定反向电压时截止;

(4)反向击穿区当加反向电压大于管子反向承认电压时,击穿。

扩展资料:

1、某一个金属导体,在温度没有显著变化时,电阻是不变的,它的伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。因为温度可以决定电阻的大小。

欧姆定律是个实验定律,实验中用的都是金属导体。这个结论对其它导体是否适用,仍然需要实验的检验。实验表明除金属外,欧姆定律对电解质溶液也适用,但对气态导体(如日光灯管、霓虹灯管中的气体)和半导体元件并不适用。也就是说在这些情况下电流与电压不成正比,这类电学元件叫做非线性元件。

2、相关概念:

(1)变容二极管:当PN结加反向电压时,Cb明显随u的变化而变化,而制成各种变容二极管。如下图所示。

(2)平衡少子:PN结处于平衡状态时的少子称为平衡少子。

(3)非平衡少子:PN结处于正向偏置时,从P区扩散到N区的空穴和从N区扩散到P区的自由电子均称为非平衡少子。

(4)扩散电容:扩散区内电荷的积累和释放过程与电容器充、放电过程相同,这种电容效应称为Cd。

参考资料来源:百度百科 - 伏安特性曲线

简述二极管的伏安特性

二极管的伏安特性是正向特性。二极管伏安特性曲线的第一象限称为正向特性,它表示外加正向电压时二极管的工作情况。在正向特性的起始部分,由于正向电压很小,外电场还不足以克服内电场对多数载流子的阻碍作用,正向电流几乎为零,这一区域称为正向二极管的伏安特性曲线。死区对应的电压称为死区电压。硅管的死区电压约为0.5V,锗管的死区电压约为0.2V。当正向电压超过某一数值后,内电场就被大大削弱,正向电流迅速增大,二极管导通,这一区域称为正向导通区。二极管一旦正向导通后,只要正向电压稍有变化,就会使正向电流变化较大,二极管的正向特性曲线很陡。因此二极管正向导通时,管子上的正向压降不大,正向压降的变化很小,一般硅管为o.7V左右,锗管为0.3V左右。因此在使用二极管时,如果外加电压较大,一般要在电路中串接限流电阻,以免产生过大电流烧坏二极管。

二极管的伏安特性

二极管的伏安特性存在4个区:死区电压、正向导通区、反向截止区、反向击穿区。死区电压:通常为,锗管0.2~0.3V,硅管0.5~0.7V正向导通区当加正向电压超过死区电压时则导通,该区为正向导通区.反向截止区加一定反向电压时截止.反向击穿区当加反向电压大于管子反向承认电压时,击穿.正向通电电流与电压为指数关系反向通电当电压小于击穿电压时几乎没有电流,当电压大于击穿电压时,这个晶体二极管就成导线了,也就报废了

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!