当前位置:新励学网 > 建筑专业 > 波函数角度分布的形状是:()。

波函数角度分布的形状是:()。

发表时间:2024-07-22 15:31:18 来源:网友投稿

波函数角度分布的形状是:()。

A 、双球形

B 、球形

C 、四瓣梅花形

D 、橄榄形

参考答案

【正确答案:A】

轨道有三个等价轨道、、均为双球形。

试比较波函数角度分布图和电子云角度分布图的异同

电子云的角度分布图是对波函数的角度分布的平方的积分。

电子云分布函数,薛定谔方程的解称为波函数,波尔认为波函数模的平方能作为发现微观电子的概率。

电子的波函数可分成径向部分R(r)和角度部分Y(φ,θ).所以R²(r)是反映在任意给定角度上电子云密度随r的变化,称作径向密度函数。而D(r)才是径向分布函数指半径为r的单位球壳内找到电子的几率。

扩展资料:

在量子力学中,用一个波函数Ψ(x,y,z)表征电子的运动状态,并且用它的模的平方|Ψ|²值表示单位体积内电子在核外空间某处出现的几率,即几率密度,所以电子云实际上就是|Ψ|²在空间的分布。

研究电子云的空间分布主要包括它的径向分布和角度分布两个方面。径向分布探求电子出现的几率大小和离核远近的关系,被看作在半径为r,厚度为dr的薄球壳内电子出现的几率。

角度分布探究电子出现的几率和角度的关系。例如s态电子,角度分布呈球形对称,同一球面上不同角度方向上电子出现的几率密度相同。p态电子呈8字形,不同角度方向上几率密度不等。

有了pz的角度分布,再有n=2时2p的径向分布,就可以综合两者得到2pz的电子云图形。

参考资料来源:百度百科-电子云

如何由波函数求电子云的形状

首先电子运行的函数应满足“薛定谔方程”,这是前提。微观量子化的讨论都得建立在这个方程之上;

然后将薛定谔方程中三个变量(x,y,z)转化为极坐标(r,θ,φ),将波函数ψ的角度分布作图,所得图像即为原子轨道角度分布图,而电子云的几率密度可以用│ψ│的平方表示,用刚求得的角度分布ψ,作│ψ│的平方的图,也就是通常说的电子云形状。

这就是原理。具体推导的过程不是在这里打几百个文字可以列清的,要指出的是,这个形状不是观察得到的(目前科技还达不到),是根据量子力学计算出来的。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!