三阶稳定系统的特征方程为的取值范围为( )。
三阶稳定系统的特征方程为的取值范围为()。
A 、大于0
B 、大于0,小于2/3
C 、大于2/3
D 、不受限制
参考答案
【正确答案:B】
根据劳斯稳定判据,三阶系统特征方程为:,稳定条件是:①各项系数均大于0;
②且。代入数据可得:。
已知系统的特征方程为,则系统稳定的t值范围为t小于5?
已知系统的特征方程为,则系统稳定的t值范围为t大于5。
由于劳斯表第一列元符号变化两次,系统有两个正实部根,该系统不稳定。劳斯稳定判据的特殊情况应用劳斯判据建立的劳斯表,有时会遇到两种情况,使计算无法进行,因此需要进行相应的数学处理,而处理的原则是不影响劳斯稳定判据的判断结果。
劳斯表中某行第一列元等于零如果出现这种情况,计算劳斯表下一行第一元时,会出现无穷现象,使劳斯稳定判据无法使用。例如系统特征方程为D(s)=s4+3s3+s2+3s+1=0 (3-89)
有两种方法可以解决这种情况。第一种方法是用因子(s+a)乘原特征方程,a是正实数,再对新特征方程应用劳斯判据判断。如用(s+3)乘式(3-89),得新特征方程为D(s)=s5+6s4+10s3+6s2+10s+3=0
若系统存在对称坐标原点的极点时会出现全零行这种情况。当劳斯表中出现全零行,可用全零行上面一行的系数构造一个辅助方程F(s)=0,并将辅助方程对s求导,其导数方程的系数代替全零行的各元素,就可按劳斯稳定判据的要求继续运算下去。
一阶二阶三阶系统的特征方程怎么求
二阶系统控制系统按数学模型分类时的一种形式。是用数学模型可表示为二阶线性常微分方程的系统.二阶系统的解的形式,可由对应传递函数W(s)的分母多项式P(s)来判别和划分。P(s)的一般形式为变换算子s的二次三项代数式,经标准化后可记为代数方程P(s)=0的根,可能出现四种情况:
1、两个实根的情况,对应于两个串联的一阶系统,如果两个根都是负值,就为非周期性收敛的稳定情况。
2、当a1=0,a2>0,即一对共轭虚根的情况,将引起频率固定的等幅振荡,是系统不稳定的一种表现。
3、当a1<0,a1-4a2<0,即共轭复根有正实部的情况,对应于系统中发生发散型的振荡,也是不稳定的一种表现。
4、当a1>0,a1-4a2<0,即共轭复根有负实部的情况,对应于收敛型振荡,且实部和虚部的数值比例对输出过程有很大的影响,一般以阻尼系数ζ来表征,常取在0.4~0.8之间为宜。
当ζ>0.8后,振荡的作用就不显著,输出的速度也比较慢。而ζ<0.4时,输出量就带有明显的振荡和较大的超调量,衰减也较慢,这也是控制系统中所不希望的。
自控考研题,闭环主导极点方面
该题没有说是否有零点,所以答案有无穷个。
由(1)知系统为I型,且增益K=1/1.2
由(2)知,设另一闭环极点为-a,(a>0),则系统特征方程为
s^3+(2+a)s^2+(2+2a)s+2a=0
接下来解题的关键是,把特征方程分成两部分A(s)+B(s)=0,然后方程左右两边同除以A(s)部分,得1+B(s)/A(s)=0.
针对本题
若无零点分成【s^3+(2+a)s^2+(2+2a)s】+2a=0,则G(s)=2a/[s^3+(2+a)s^2+(2+2a)s]
其中2a=K,即a=5/12。最后结果可看附图
若有一个零点,则分成[s^3+(2+a)s^2+(0.8+2a)s]+1.2(s+2a/1.2)=0,即,G(s)=1.2(s+2a/1.2)/[s^3+(2+a)s^2+(0.8+2a)s]
其中a>0的任何实数。
若有两个零点,也可类似操作。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇