微分方程的特解是:
微分方程的特解是:
A 、
B 、
C 、
D 、
参考答案
【正确答案:A】
最简单的方法是讲已知条件,只有A符合。故答案A。
微分方程的特解是什么?
答案是A。
根据线性方程的叠加原理,原非齐次线性方程的特解是y''+y=x^2+1的特解与y''+y=sinx的特解之和。
因为0不是特征方程的根,所以y''+y=x^2+1的特解设为ax^2+bx+c。
因为±i是特征方程的单根,所以y''+y=sinx的特解设为x(Acosx+Bsinx)。
所以原非齐次线性方程的特解设为ax^2+bx+c+x(Acosx+Bsinx)。
简介:
数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。
在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。
微分方程的通解和特解是什么?
通解中含有任意常数,而特解是指含有特定常数。比如y=4x^2就是xy'=8x^2的特解,但是y=4x^2+C就是xy'=8x^2的通解,其中C为任意常数。
求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。
微分方程的作用
1、微分方程,是高等数学中最为重要的一个分支领域,只要在等式中含有未知量的导数与变量之间关系的方程,都可以称之为微分方程。
2、我们使用微分方程可以将一个复杂的个体分割成无限个微小部分,在利用微分方程对一个一个的小部分利用边界条件对其进行求解,最后求解整个部分的解。
3、微分方程,现在广泛应用在计算机仿真、电子电路计算、航空航天等多个领域。
什么是微分方程的通解和特解 什么叫微分方程的通解和特解
1、通解中含有任意常数,而特解是指含有特定常数。比如y=4x^2就是xy=8x^2的特解,但是y=4x^2+C就是xy=8x^2的通解,其中C为任意常数。 2、定义:若微分方程的解中含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相同,则称此解为微分方程的通解;而若微分方程的解不含任意常数,则称为微分方程的特解。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇