f'(x)连续,则等于()。(C为任意常数)
f'(x)连续,则等于()。(C为任意常数)
A 、f(2x+1)+C
B 、
C 、2f(2x+1)+C
D 、f(x)+C
参考答案:
【正确答案:B】
设f(x)是连续函数,则∫_{a}^{b}f(x)dx-∫_{a}^{b}f(a+b-x)dx=____
(1)选项B,设f(x)=x2,它是偶函数,f(x)的原函数是F(x)=
1
3
x3+C(C为任意常数),但F(x)并不是奇函数(除了C=0外),所以排除B.
(2)选项C,设f(x)=sin2x,但它的原函数F(x)=
1
2
x−
1
4
sin2x+C(C为任意常数)不是周期函数,所以排除C.
(3)选项D,设f(x)=x,它是R上的增函数,但它的原函数F(x)=
1
2
x2+C(C为任意常数),不是R上的增函数,所以排除D.
(4)选项A,由题意设F(x)
=∫
x
0
f(t)dt+C(C为任意常数),则F(−x)
=∫
−x
0
f(t)dt+C
令u=−t
.
-
∫
x
0
f(−u)du+C,
∴如果f(x)是奇函数,则有f(-u)=-f(u)
∴F(-x)=
∫
x
0
f(u)du+C=F(x)
∫f(x)dx=什么?
具体回答如下:
令u=tanx/2
则sinx=2u/(1+u²)
cosx=(1-u²)/(1+u²)
dx=2du/(1+u²)
∫1/(sinx+cosx)
=∫2/(1+2u-u²)du
=√2/2∫[1/(u-(1-√2))-1/(u-(1+√2))]du
=√2/2ln|(u-(1-√2))/(u-(1+√2))|+C
=√2/2ln|(tanx/2-1+√2)/(tanx/2-1-√2)+C
不定积分的意义:
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
这表明G(x)与F(x)只差一个常数,因此当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数,也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。
由此可知如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇