二阶系统传递函数的频率特性函数为( )。
二阶系统传递函数的频率特性函数为()。
A 、
B 、
C 、
D 、
参考答案:
【正确答案:B】
频率特性和传递函数的关系,因此频率特性。
二阶系统wd是什么
二阶系统wd属于这个传递函数:
wd=wn*sqrt(1-xi^2)。
其中wd为有阻尼频率。
wn为无阻尼频率。
xi为阻尼比。
举例说明:
1、两个实根的情况,对应于两个串联的一阶系统,如果两个根都是负值,就为非周期性收敛的稳定情况。
2、当a1=0,a2>0,即一对共轭虚根的情况,将引起频率固定的等幅振荡,是系统不稳定的一种表现。
3、当a1<0,a1-4a2<0,即共轭复根有正实部的情况,对应于系统中发生发散型的振荡,也是不稳定的一种表现。
自动控制原理公式
A.阶跃函数
斜坡函数
抛物线函数
脉冲函数
正弦函数
B.典型环节的传递函数
比例环节
惯性环节(非周期环节)
积分环节
微分环节
二阶振荡环节(二阶惯性环节)
延迟环节
C.环节间的连接
串联
并联
反馈 开环传递函数=
前向通道传递函数=
负反馈闭环传递函数
正反馈闭环传递函数
D.梅逊增益公式
E.劳斯判据
劳斯表中第一列所有元素均大于零
sn a0 a2 a4 a6 ……
sn-1 a1 a3 a5 a7 ……
sn-2 b1 b2 b3 b4 ……
sn-3 c1 c2 c3 c4 ……
… … …
s2 f1 f2
s1 g1
s0 h1
劳斯表中某一行的第一个元素为零而该行其它元素不为零,ε→0;
劳斯表中某一行的元素全为零。P(s)=2s4+6s2-8。
F.赫尔维茨判据
特征方程式的所有系数均大于零。
G.误差传递函数
扰动信号的误差传递函数
H.静态误差系数
单位
输入形式
稳态误差ess
0型
Ⅱ型
Ⅲ型
阶跃1(t)
1/1+Kp
0
0
斜坡t·1(t)
∞
1/Kv
0
加速度0.5t2·1﹙t﹚
∞
∞
1/Ka
I.二阶系统的时域响应:
其闭环传递函数为
或
系统的特征方程为
特征根为
上升时间tr
其中
峰值时间tp
最大超调量Mp
调整时间ts
a.误差带范围为 ±5%
b.误差带范围为± 2%
振荡次数N
J.频率特性:
还可表示为:G(jω)=p(ω)+jθ(ω)
p(ω)——为G(jω)的实部,称为实频特性;
θ(ω)——为G(jω)的虚部,称为虚频特性。
显然有:
K.典型环节频率特性:
1. 积分环节
积分环节的传递函数:
频率特性:
幅频特性:
相频特性:
对数幅频特性:
2. 惯性环节
惯性环节的传递函数:
频率特性:
幅频特性:
相频特性:
实频特性:
虚频特性:
对数幅频特性:
对数相频特性:
3. 微分环节
纯微分环节的传递函数G(s)=s
频率特性:
幅频特性:
相频特性:
对数幅频特性:
4. 二阶振荡环节
二阶振荡环节的传递函数:
频率特性:
幅频特性:
相频特性:
实频特性:
虚频特性:
对数幅频特性:
5. 比例环节
比例环节的传递函数: G(s)=K
频率特性:
幅频特性:
相频特性:
对数幅频特性:
6. 滞后环节
滞后环节的传递函数:
式中 —— 滞后时间
频率特性:
幅频特性:
相频特性:
对数幅频特性:
L.增益裕量:
式中ωg满足下式∠G (jωg) H(jωg)= -180°
增益裕量用分贝数来表示:
Kg=-20lg|G(jωg)H(jωg)|dB
相角裕量:定义:使系统达到临界稳定状态,尚可增加的滞后相角 ,称为系统的相角裕度或相角裕量,表示为
M.由开环频率特性求取闭环频率特性
开环传递函数G(s),系统的闭环传递函数
系统的闭环频率特性
N.闭环频域性能指标与时域性能指标
的关系
二阶系统的闭环传递函数为
系统的闭环频率特性为
系统的闭环幅频特性为
系统的闭环相频特性为
二阶系统的超调量Mp
谐振峰值Mr
由此可看出谐振峰值Mr仅与阻尼比ζ有关,超调量Mp也仅取决于阻尼比 ζ
谐振频率ωr 与峰值时间tp的关系
由此可看出当 ζ为常数时,谐振频率 ωr与峰值时间tp成反比,ωr值愈大,tp愈小,表示系统时间响应愈快.
低频段对数幅频特性
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇