当前位置:新励学网 > 建筑专业 > 若,则必有()。

若,则必有()。

发表时间:2024-07-22 15:56:08 来源:网友投稿

若,则必有()。

A、a=-1,b=2

B、a=-1,b=-2

C、a=-1,b=-1

D、a=1,b=1

参考答案:

【正确答案:C】

因为

故,即 2十a+b= 0,得 b=-2-a.代入原式:

故4+a=3,得a=-1,b=-1。

线性代数 设A为n阶实对称矩阵,若A^3=0,则必有A=0

是正确的的。证明如下:

A^3=0

所以A的特征值满足x^3=0

即x=0,A只有特征值0(n重)

从而A=0。

如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。

实对称矩阵主要性质:

1、实对称矩阵A的不同特征值对应的特征向量是正交的。

2、实对称矩阵A的特征值都是实数,特征向量都是实向量。

3、n阶实对称矩阵A必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值。

4、若A具有k重特征值λ0 必有k个线性无关的特征向量,或者说秩r(λ0E-A)至多为n-k,其中E为单位矩阵。

设A、B都是n阶方阵,若AB=0(0为n阶零矩阵),则必有

结果为:

解题过程如下:

扩展资料

矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

假设M是一个m×n阶矩阵,其中的元素全部属于域K,也就是实数域或复数域。其中U是m×m阶酉矩阵;Σ是m×n阶实数对角矩阵;而V*,即V的共轭转置,是n×n阶酉矩阵。

这样的分解就称作M的奇异值分解 。Σ对角线上的元素Σi,i即为M的奇异值。常见的做法是将奇异值由大而小排列。如此Σ便能由M唯一确定了。

在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!