设A是3阶矩阵,是3阶可逆矩阵,且若矩阵,则=
设A是3阶矩阵,是3阶可逆矩阵,且若矩阵,则=
A 、
B 、
C 、
D 、
参考答案:
【正确答案:B】
当的排列满足对应关系,对应对应特征值
设A为3阶矩阵P为3阶可逆矩阵P(-1)AP=(1,1,0;-1,1,0;0,0,2)P=(α1,α2,α3)Q=(α1,α2,2α1+α3)则Q(-1)AQ
证:
(1)因为A,P为n阶矩阵,P可逆,且AP=PA
设Aα=λα,
则A(Pα)=P(Aα)=P(λα)=λ(Pα),
故Pα也是A的特征向量.
(2)由A有n个不同的特征值知,
A的每个特征值只对应一个线性无关的特征向量,
又α,Pα是对应同一个特征值的特征向量,
故它们线性相关,
故存在常数c,
使得Pα=cα,
故α也是P的特征向量.
所以得证。
扩展资料矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵
参考资料来源:百度百科-矩阵
设A为3阶矩阵,p为3阶可逆矩阵,且P-1AP=diag(1,-1,1),P=(α1,α2,α3),Q=(α1,α2,α3-
如果m是A的一个特征值,a是相应的特征向量。
那么ka仍然是A的属于特征值m的特征向量。 这里,有花样的地方就在于a2,a3两个的特征值相等了。即Aa2 = 2a2 ,Aa3 = a Aa3 ,那么P矩阵中,可以交换a2,与a3的次序,即P = (ka1,a3,a2)。
由已知 Aα = λα
则 P^-1AP (P^-1α) = λP^-1α
即有 B(P^-1α) = λ(P^-1α)
所以B的属于特征值λ的特征向量为 P^-1α。
扩展资料:
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
参考资料来源:百度百科-特征值
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇