当前位置:新励学网 > 建筑专业 > 设向量α与向量β的夹角等于:

设向量α与向量β的夹角等于:

发表时间:2024-07-22 16:10:31 来源:网友投稿

设向量α与向量β的夹角等于:

A 、

B 、

C 、

D 、

参考答案:

【正确答案:B】

本题考查向量代数的基本运算。 方法1:

向量的夹角公式是什么?

平面向量夹角公式:cos=(ab的内积)/(|a||b|)

(1)上部分:a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2

(2)下部分:是a与b的模的乘积:设a=(x1,y1),b=(x2,y2),则(|a||b|)=根号下(x1平方+y1平方)*根号下(x2平方+y2平方)

向量的夹角就是向量两条向量所成角。这里应当注意,向量是具有方向性的。BC与BD是同向,所以夹角应当是60°。BC和CE你可以把两条向量移动到一个起点看,它们所成角为一个钝角,120°。

扩展资料

已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。这就是说两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。

A1X+B1Y+C1=0........(1)

A2X+B2Y+C2=0........(2)

则(1)的方向向量为u=(-B1,A1),(2)的方向向量为v=(-B2,A2)

由向量数量积可知,cosφ=u·v/|u||v|,即

两直线夹角公式:cosφ=A1A2+B1B2/[√(A1^2+B1^2)√(A2^2+B2^2)]

注:k1,k2分别L1,L2的斜率,即tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

向量a和b怎么求夹角

向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)。

| a |*cosΘ叫做向量a在向量b上的投影。

| b |*cosΘ叫做向量b在向量a上的投影。

投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。

设两个非零向量a与b的夹角为θ,则将|b|·cosθ 叫做向量b在向量a方向上的投影或称标投影。

在式中引入a的单位矢量a(A),可以定义b在a上的矢投影。

由定义可知一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。

向量a·向量b怎么求夹角?

向量a·向量b=| a |*| b |*cosΘ,Θ为两向量夹角,| b |*cosΘ叫做向量b在向量a上的投影,| a |*cosΘ叫做向量a在向量b上的投影。

在数学中向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!