以下概念中,不属于欧拉法的是( )。
以下概念中不属于欧拉法的是( )。
A 、速度
B 、加速度
C 、迹线
D 、流线
参考答案:
【正确答案:C】
欧拉法是指以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法。拉格朗日法是指以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动。A项,速度是描述物体运动快慢的物理量,定义为位移随着时间的变化率。B项,加速度是速度变化量与发生这一变化所用时间的比值Ov/Ot), 是描述物体速度改变快慢的物理量。C项,迹线是流体质点在空间运动时所描绘出来的曲线。它的切线给出同一流体质点在不同时刻的速度方向。迹线是单个质点在连续时间过程内的流动轨迹线,是拉格朗日法描述流动的一种方法。D项,流线是某一相同时刻在流场中画出的一 条空间曲线,在该时刻,曲线上的所有质点的速度矢量均与这条曲线相切。它是欧拉法描述流动的一种方法。
什么是欧拉方法(Euler's method)?
欧拉法是常微分方程的数值解法的一种,其基本思想是迭代。其中分为前进的EULER法、后退的EULER法、改进的EULER法。所谓迭代就是逐次替代,最后求出所要求的解,并达到一定的精度。误差可以很容易地计算出来。欧拉法是考察流体流动的一种方法。通常考察流体流动的方法有两种,即拉格朗日法和欧拉法。
欧拉法的特点
单步显式,一阶求导精度,截断误差为二阶。
欧拉法的缺点
欧拉法简单地取切线的端点作为下一步的起点进行计算,当步数增多时,误差会因积累而越来越大。因此欧拉格式一般不用于实际计算。
流体运动的连续性微分方程是什么
描述流动的两种方法
描述流动的方法有拉格朗日法和欧拉法。
1. 拉格朗日(Lagrange)法:拉格朗日法以研究个别流体质点的运动为基础,通过对每个流体质点运动规律的研究来获得整个流体的运动规律。这种方法又称为质点系法。
拉格朗日法的基本特点是追踪单个质点的运动。此法概念明确,但复杂。一般不采用拉格朗日法。
2. 欧拉(Euler)法:欧拉法是以考察不同流体质点通过固定的空间点的运动情况来了解整个流动空间内的流动情况,即着眼于研究各种运动要素的分布场。这种方法又叫做流场法。
欧拉法中流场中任何一个运动要素可以表示为空间坐标和时间的函数。例如在直角坐标系中,流速 是随空间坐标 和时间 而变化的,称为流速场
用欧拉法描述流体运动时,质点加速度等于时变加速度和位变加速度之和,表达式为:
(3-6)
3.1.2 迹线与流线
在研究流动时,常用某些线簇图像表示流动情况。拉格朗日法是研究流体中各个质点在不同时刻运动的化情况,引出迹线的概念;欧拉法是在同一时刻研究不同质点的运动情况,引出流线的概念。
1. 迹线
某一流体质点在运动过程中,不同时刻所流经的空间点所连成的线称为迹线,或者迹线就是流体质点运动时所走过的轨迹线。
2. 流线
流线是某瞬间在流场中绘出的曲线,在此曲线上所有各点的流速矢量都和该线相切。流线密处流速大,流线稀处流速小。流线是欧拉法分析流动的重要概念。
流线具有以下特性:
(1)流线不能相交。如果流线相交,那么交点处的流速矢量应同时与这两条流线相切。显然一个流体质点在同瞬间只能有一个流动方向,而不能有两个流动方向,所以流线不能相交。
(2)流线是一条光滑曲线或直线,不会发生转折。因为假定流体为连续介质,所以各运动要素在空间的变化是连续的,流速矢量在空间的变化亦应是连续的。若流线存在转折点,同样会出现有两个流动方向的矛盾现象。
(3)流线表示瞬时流动方向。因流体质点沿流线的切线方向流动,在不同瞬时,当流速改变时,流线即发生变化。
什么叫做欧拉公式?
欧拉定理 (1)背景:欧拉公式的背后是一门新的几何学,这种新的几何学只研究图形各部分位置的相对次序,而不考虑图形尺寸大小,这就是由莱布尼兹和欧拉共同奠基的“橡皮膜上的几何学”(位置几何学),如今这门学科已经发展成数学的一个重要的分支——拓扑学。 (2)历史:有关凸多面体最有趣的定理之一是欧拉公式“V-E+F=2”,其实大约在1635年笛卡尔就早已发现了它。欧拉在1750年独立地发现了这个公式,并于1752年发表了它。由于笛卡尔的研究到1860年才被人们发现,所以这个定理就称为欧拉公式而不是笛卡尔公式。 欧拉,出生在瑞士的巴塞尔(basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导. 欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。欧拉还发现不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有V-E+F=2这个关系。V-E+F 被称为欧拉示性数,成为拓扑学的基础概念。以欧拉的名字命名的数学公式、定理等在数学书籍中随处可见, 与此同时他还在物理、天文、建筑以至音乐、哲学方面取得了辉煌的成就。欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等。 1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.但是过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁. 欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的. 欧拉公式有4条 (1)分式: a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c (2)复数 由e^iθ=cosθ+isinθ,得到: sinθ=(e^iθ-e^-iθ)/2i cosθ=(e^iθ+e^-iθ)/2 (3)三角形 设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=R^2-2Rr (4)多面体 设v为顶点数,e为棱数,是面数,则 v-e+f=2-2p p为欧拉示性数,例如 p=0 的多面体叫第零类多面体 p=1 的多面体叫第一类多面体 等等 其实欧拉公式是有4个的,上面说的都是多面体的公式
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇