的麦克劳林展开式正确的是
的麦克劳林展开式正确的是
A 、
B 、
C 、
D 、
参考答案:
【正确答案:B】
麦克劳林公式展开式是什么?
麦克劳林公式展开式是f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n。
简介
1742年撰写名著《流数论》,是最早为Newton流数方法做出了系统逻辑阐述的著作。他以熟练的几何方法和穷竭法论证了流数学说,还把级数作为求积分的方法,并独立于Cauchy以几何形式给出了无穷级数收敛的积分判别法。他得到数学分析中著名的Maclaurin级数展开式,并用待定系数法给予证明。
他在代数学中的主要贡献是在《代数论》(1748,遗著)中,创立了用行列式的方法求解多个未知数联立线性方程组。但书中记叙法不太好,后来由另一位数学家Cramer又重新发现了这个法则,所以被称为Cramer法则。
麦克劳林公式展开是什么?
麦克劳林公式展开是f(x)=sinx。
麦克劳林公式是泰勒公式的一种特殊形式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
泰勒公式的意义是把复杂的函数简单化,也即是化成多项式函数,泰勒公式是在任何点的展开形式。麦克劳林公式的意义是在0点,对函数进行泰勒展开。
常用麦克劳林公式展开:
f(x)=f(x0)+f’
若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和:
f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn。
其中Rn是公式的余项,可以是如下:
1.佩亚诺(Peano)余项:
Rn(x) = o(x^n)。
2.尔希-罗什(Schlomilch-Roche)余项:
Rn(x) = f(n+1)(θx)(1-θ)^(n+1-p)x^(n+1)/(n!p)。
[f(n+1)是f的n+1阶导数,θ∈(0,1)]。
f(x)=arctanx的麦克劳林级数展开式为________?
f(x)=arctanx的麦克劳林级数展开式为:∑(-1)^n*x^(2n+1)/(2n+1)(n从0到∞)。
麦克劳林公式是泰勒公式的一种特殊形式;最为常见的函数的等价麦克劳林级数Maclaurin Series,以及收敛区间Radius of Convergence判断,麦克劳林级数就是把展开点取为x=0的时候的结果。
扩展资料:
分子是两个或以上的函数相乘,这种情况比较复杂,主要考虑的是分子相乘会出现的所有与分母同阶的项,举个例子,比如分母是三阶,那么两个多项式必须都展开到三阶,因为一个函数的常数项与另一个函数的三次项,一个函数的一次项与另一个函数的二次项相乘都是三次,也就说,必须要保证展开的阶数相乘会得到所有与分母同阶的三次项。
如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来求近似函数在这一点的邻域中的值。泰勒公式还可以给出这个多项式和实际的函数值之间的偏差。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇