当前位置:新励学网 > 建筑专业 > 潮汐河口航道治理一般采用( )两者相结合的手段进行。

潮汐河口航道治理一般采用( )两者相结合的手段进行。

发表时间:2024-07-22 18:25:27 来源:网友投稿

潮汐河口航道治理一般采用( )两者相结合的手段进行。

A 、炸礁与疏浚

B 、筑坝与护岸

C 、整治与疏浚

D 、筑坝与疏浚

参考答案:

【正确答案:C】

双导堤宽度如何设置

双导堤的宽度和你河流的流速和流量有关,你这河流越大双堤就要更宽

利用挖河疏浚进行航道治理在国外实施较多,具有不少的研究成果和成功的范例,挖沙技术也相对成熟。如美国的密西西比河的治理,为了打通拦门沙,西南水道的早期治理始于19世纪30年代。先是单纯用链式挖泥船开辟拦门沙航道,但一遇风暴即被淤平。实践证明如不加整治而单纯依靠疏浚很难维护拦门沙水道。后采用双导堤,导堤间筑丁坝约束水流增加流速,结合适当疏浚取得所需水深,分汊口上游左岸用丁坝群导流,增加西南水道分流量以抵消口门约束影响;水道轴线向东偏转350,以避开洪季盐、淡水混合所造成的严重淤积。经采用上述工程措施,使河口拦门沙水道水深得以维持

为改善黄河潼关高程的淤积抬升状况,减轻因潼关高程抬升对黄河小北干流和渭河下游防洪造成的不利影响,充分发挥三门峡水库的综合效益,1996年和1997年在三门峡库区潼关河段开展了人工机械冲沙清淤试验,取得了一定的效果。但由于清淤规模小,作业河段有限、冲淤清淤机械不完善,以及试验时间短,有不少关键技术问题和科学问题也未能深入研究。

1997~1998年、2001~2002年和2004年分三次在河口河段组织实施了挖河固堤工程,在施工组织、施工机具、减淤效果、排洪能力、环境影响等方面开展了研究,取得了较多的成果。河口是海与河的汇合地区,受潮浪与河流双重作用,动力条件及河床演变过程都比较复杂。P.Brunn(1976)曾指出,维持河口通航水深,基本实践经验是离开必要的疏浚去治理任一河口都是不可能的。河口水道浚深后,淤积部位则会随盐水楔的上溯而上移,泥沙淤积部位也跟着上移,并随盐水楔而上下移动。纵观国内外对河口疏浚的研究,要控制或改善疏浚产生的问题,必须采取一定的治导工程,可以说整治与疏浚相结合是治理潮汐河口的有效途径,需要更深入地进行研究

地理必修一知识点?

一. 经纬网和地球运动

(一).经线和纬线

地球形状和大小:

地球形状是一个两极略扁的不规则的球体。地球的平均半径为6371千米,赤道半径6378千米,极半径6357千米。赤道周长约为4万千米。

定义 特 点 重要意义

线 在地球仪上,连接南北两极的线。

1. 经线指示南北方向;

2. 所有经线的长度都相等;

3. 一条经线成一个半圆,两条相对的经线成一个圆(圈);

1. 重要的经线:本初子午线、1800经线、200W、1600E;

2. 世界三大洋的分界线:

200E、1460E、680W;

3. 中国境内重要的经线:

730E、900E、1000E、1100E、1200E、1350E

纬 线 在地球仪上,和赤道平行的线(圈)。(与地轴相垂直的平面与地球表面的交线)

1. 纬线指示东西方向;

2. 在半球上所有纬线的长度都不相等,最长的纬线是赤道,向两极递减

3. 一条纬线成一个圆(圈); 1.重要的纬线:

赤道、南北回归线(23.50N23.50S)、南北极圈(66.50N/66.50S)

2.低、中、高纬的界线:

00—300低纬;

300-600中纬;

600-900高纬。

3.中国境内重要纬线:

300N、400N、、540N

(二).经度和纬度

经度:零度经线叫做本初子午线。从本初子午线向东、向西各分为180度,以东的180°属于东经,用“E”作代号;以西的180°属于西经,用“W”作代号。东西180°经线合为一条经线。用20°W和160°E的经线圈,将地球分为东、西两个半球。

纬度:赤道是零度纬线。赤道以北的纬度,叫北纬,用“N”作代号;赤道以南的纬度叫南纬,用“S”作代号。北纬、南纬各有90°。

低纬、中纬和高纬

南北半球划分——00纬线

纬度一度:所对应的经线长度为110(千米)

经度一度:所对应的纬线长度为110 x 当地地理纬度的余弦(千米)。

(三).经纬网——用来确定某点的地理位置,也是建立地理事物之间空间位置的一个重要途径。

经度的数学定义是面面角

纬度的数学定义是线面角

1、全球的区域位置判读选取的10条经纬线

经纬线 穿过的主要地形区 记忆方法

纬线 北回归线 红海、阿拉伯海、印度半岛、中南半岛、台湾岛、墨西哥湾 一湾两海三半岛,

还要经过台湾岛。

赤道 刚果盆地、苏门答腊岛、

加里曼丹岛、亚马孙平原 刚果苏门前,

亚马加里面。

南回归线 南非高原、澳大利亚、

拉普拉塔河和巴拉那河 南非、澳洲、南美洲,

拉普、巴拉向南流。

经线 20°W 格陵兰岛、冰岛西侧、

大西洋东部 冰岛以西、格陵兰,

大西洋东中部穿。

本初

子午线 大不列颠岛、伊比利亚半岛、几内亚湾 零度经线、大不列颠,

伊比利亚、几内亚湾。

20°E 斯堪的纳维亚山脉、波罗的海、波德平原、巴尔干半岛、地中海、刚果盆地、好望角 斯堪的纳维亚山,

波罗的海、巴尔干,

波德平原、地中海,

刚果盆地、好望穿。

40°E 东欧平原、黑海、红海、

东非高原东部边缘 东经四十度,

东欧平原穿

黑海和红海

东非高原边。

60°E 乌拉尔山、咸海、

伊朗高原、阿拉伯海 北沿乌拉尔,

南过阿拉伯海,

中穿伊朗和咸海。

120°E 大兴安岭、渤海、

台湾海峡、澳大利亚西部 兴安、渤海、台湾海(峡)

澳大利亚西部穿。

180° 白令海、新西兰南北二岛以东 白令海西,

新西兰东。

2、中国的区域位置判读选取的8条经纬线

经纬线 穿过的主要地形区 记忆方法

纬线 北回归线 云南、广西、广东、台湾 北回归线东西穿,

云南、两广和台湾。

30°N 冈底斯山脉、横断山脉、

四川盆地、杭州湾 冈底斯山横断山,

四川盆地杭州湾。

40°N 塔里木盆地、祁连山北侧、

河套平原南侧、渤海湾 塔里木、祁连山,

河套南侧渤海湾。

经线 80°E 天山山脉、塔里木盆地、

青藏高原西部 天山山脉塔里木,

青藏高原穿西部。

90°E 阿尔泰山、吐鲁番盆地、

可可西里、孟加拉湾 阿尔泰山、吐鲁番,

可可西里孟加拉湾。

100°E 河西走廊、祁连山、

横断山脉、泰国湾 河西走廊祁连山,

横断山脉泰国湾。

110°E 阴山、陕北、关中、陕南、巫山、雷州半岛和海南 北起阴山贯三秦,

南越巫山过海南。

120°E 大兴安岭、渤海、

长江三角洲、台湾海峡 兴安虎声吼,

渤海水色秀

长江三角洲

台湾海峡游。

(四)经纬网知识的应用

(高中生地理2004年第1期第17页)

1、比较比例尺的大小:比例尺的大小是比值的大小。

图幅大小相同的地图,表示的范围越大,其内容越简略,比例尺

也就越小;表示的范围越小,其内容越详细,比例尺就越大。

而范围的大小是可以根据经纬线组成的网格进行大致的判断的。

一般来说经纬度间隔相同的网格,其纬度越高,表示的范围就越小;纬度越低,表示的范围就越大。在图幅大小相同、纬度大致相同时经纬度间隔相等的,网格面积越大,比例尺越大;网格面积越小,比例尺越小。

2.经纬网和地理方位的判断。

在用经纬网确定两点的相互方位时,应注意的问题是:

①位于同一经线上的两点为正南、正北的关系,位于同一纬线上的两点为正东、正西的关系。

②若两点既不在同一条经线上,又不在同一条纬线上,在判定两点间的方位时,既要判定两点间东西方向,又要判定两点间的南北方向。

③按经线确定南北方向是绝对的。北极是地球上最北的地点,它的四面八方都是南方,南极则相反;按纬线确定东西方向则是相对的,理论上讲地球上没有最东的地点,也没有最西的地点,判定东西方向,首先要选择劣弧段(两点间的差值小于180°的弧段),再按地球自西向东的自转方向确定方位。如图一为南半球,问 C在B 的什么方向?我们先画出A、B两点间的地球自转方向箭头, B 为已知、C为未知,以B为坐标园点,建立坐标系,从纬度看:B在北方、C南方,从经度看:B在西方、C在东方,所以C在B 的东南方向。

图一 图二

要点:

(1)经线指示南北方向、纬线指示东西方向、取小舍大(取小于1800的劣弧、舍大于1800的优弧)

(2)球面最短距离(经过两点的大圆劣弧长度):航海和航空的线

路设计中经常应用。

① 同一经度上的两点,其劣弧线就是经线

② 北半球上的两点,劣弧线“向北凸”;

南半球上的两点,劣弧线“向南凸”。

(3)常见的经纬网图:方格状经纬网图、

特殊视角的经纬网图、以极地为中心的半球投影图。

3.判断温度带及气候类型

4.换算时间和确定昼夜长短、日出(日落)时刻

5.确定地理位置(区域),判断地理事物。

6.判断与季节有关的地理现象

7.估算实地距离

(高中生地理2004年第5期第30页)

(1)如果两点经度相同,则只要算出两点之间的纬度差β,再用纬度差β乘以110千米,

(2)如果两点纬度相同,经度相差β度的球面距离

Rφ=ROβCOSφ=110βCOSφ千米

地球自转的线速度随纬度的变化关系式:

Vφ=VOCOSφ

φ为当地的地理纬度,VO为赤道线速度, Vφ表示该纬度地球自转的线速度。

(3)如果两点经度不相同,纬度也不相同,计算两点间距离时需要进行估算,先假设两点的经度相同或者纬度相同,然后再根据实际情况扩大或缩小。

二. 时区和日界线

(高中生地理2003年第5期、第1期,2004年第1期第15页)

思考: 当太阳直射在东经90度上某点时,全球分为两个日期的经线是多少?

已知北京时间为10月2日4点,求10月2日所跨的经度范围。

1、地球运动与时间的关系

地球自转方向:自西向东,东早西晚(定性)

地球自转周期:一个太阳日,每小时转动15度(定量)

日地空间关系:确定时刻,矫正时刻(0时、12时等定标)

东西时差计算:东加西减,东早西晚(定法)

2、地方时:因经度而不同的时间,我们称之为地方时。

某地地方时=已知地方时±4分钟/10×两地经度差

(1)东经的度数越大,时刻越早;西经的度数越大,时刻越晚;

同一地点时刻数大的为早;不同地点,时刻数小的为早。

特殊的地理位置通常有:晨(昏)线与赤道相交点所在经线的地方时为6时和18时;晨(昏)线与纬线相切点所在经线的地方时为0时或12时。

如右图中①点所在经线的时间为12时,而

②点所在经线的时间为18时。

(2)昼夜长短的变化与昼夜时数的计算。

看其昼弧和夜弧所跨的经度数。

6.判断与季节有关的地理现象

7.估算实地距离

(高中生地理2004年第5期第30页)

(1)如果两点经度相同,则只要算出两点之间的纬度差β,再用纬度差β乘以110千米,

(2)如果两点纬度相同,经度相差β度的球面距离

Rφ=ROβCOSφ=110βCOSφ千米

地球自转的线速度随纬度的变化关系式:

Vφ=VOCOSφ

φ为当地的地理纬度,VO为赤道线速度, Vφ表示该纬度地球自转的线速度。

(3)如果两点经度不相同,纬度也不相同,计算两点间距离时需要进行估算,先假设两点的经度相同或者纬度相同,然后再根据实际情况扩大或缩小。

二. 时区和日界线

(高中生地理2003年第5期、第1期,2004年第1期第15页)

思考: 当太阳直射在东经90度上某点时,全球分为两个日期的经线是多少?

已知北京时间为10月2日4点,求10月2日所跨的经度范围。

1、地球运动与时间的关系

地球自转方向:自西向东,东早西晚(定性)

地球自转周期:一个太阳日,每小时转动15度(定量)

日地空间关系:确定时刻,矫正时刻(0时、12时等定标)

东西时差计算:东加西减,东早西晚(定法)

2、地方时:因经度而不同的时间,我们称之为地方时。

某地地方时=已知地方时±4分钟/10×两地经度差

(1)东经的度数越大,时刻越早;西经的度数越大,时刻越晚;

同一地点时刻数大的为早;不同地点,时刻数小的为早。

特殊的地理位置通常有:晨(昏)线与赤道相交点所在经线的地方时为6时和18时;晨(昏)线与纬线相切点所在经线的地方时为0时或12时。

如右图中①点所在经线的时间为12时,而

②点所在经线的时间为18时。

(2)昼夜长短的变化与昼夜时数的计算。

看其昼弧和夜弧所跨的经度数。

3、时区和区时

地球自转一周3600,约需要时间24小时,也就是每小时转150,每4分钟转10

3600/24小时=150/小时

150/60分 = 10 /4分钟

(1)时区——为了统一时间标准,在地方时的基础上,国际上规定了区时制度。

由于全球跨经度3600,自转周期约为24小时,因此把全球划分为成24个时区,每个时区跨经度150。

具体划分方法:

☆ 以本初子午线为基准,从7.50E至7.50W划为一个时区,为中时区或零时区。

☆ 在中时区以东,依次分为东一区至东十二区;在中时区以西,依次分为西一区至西十二区。

☆ 东十二区和西十二区是半时区、各跨经度7.50,合成一个时区,称为东西12区。

☆ 时区数=经度数÷15

(2)区时——各时区都以本时区的中央经线的地方时作为全区共同使用的时刻,称为区时。各时区的中央经线的度数都是15 的倍数,

东面的区时始终要比西面的区时早达到某一时刻。

4、日界线:

国际上规定把东、西十二区中央的180°经线作为日界线,也叫国际日期变更线。日界线两侧的日期相差一天,当海船或飞机在太平洋上由西向东航行越过日界线时(从东十二区进入西十二区),日期要减去一天,由东向西航行越过日界线时(从西十二区进入东十二区),日期要加上一天。为了照顾同一行政区域内日期的统一,日界线有三处偏离了180°经线,曲折地绕过大陆和岛屿,使它通过海峡和大洋,避免穿过陆地。日界线两侧的东、西十二区,日期不同而钟点相同。)

地球上的日期的分界线有两条:

一条是国际上规定的1800经线(实际的日界线有偏离);

另一条是24时(或次日0时)所在的经线(按地方时划分)或

23—24时(或次日0—1时)所在时区的边界(按区时划分)

涉及日界线的计算问题要注意:

(1)先确定日界线的位置即180°经线。

(2)按地球自转方向越过日界线采用“东减西加”的原则。

(3)注意越过日界线计算日期时,要注意星期的变化,月份的变化(大小月差异,平年与闰年的月份变化),年份的变化。

(4)确定某一日期所占比例时除确定180°经线外,还要找到“零”时所对应的经线。

(5)已知两个日期分界,求任一经线上的地方时

已知某地地方时,求地球上两个日期的分界

5、涉及飞行时间的两地地方时

目的地区时=出发地区时±两地时区差(东加西减)+飞行时间

6、标准时:各国统一使用的时间。绝大部分国家只有一个标准时,多采用这个国家东部时区的区时,也有采用半区时的国家,如印度等;少数大国有两个标准时,如中国、美国、俄罗斯等。注意一个国家的任何地区,所使用的时间都为标准时,除非有特别说明是所在时区的区时或所在经线的地方时时例外。

北京时间:我国全国统一使用的时间,即东八区的区时,东经120度的地方时。注意北京时间不等于北京地方时,在有关日出日落时间的题目中多采用的是地方时。

三.地图的阅读(地图的三要素)

【专题导读】

地图是根据一定的数学法则,将地球表面的自然、经济和人文现象,以各种不同的符号和注记在平面纸上缩小成概括的图形,它能反映各种自然现象和人文现象的地理分布以及相互关系。

1.地图阅读基础知识

(1)比例尺

比例尺也叫缩尺,表示图上距离与实地水平距离缩小的程度。

比例尺的方式:线段式、文字式、数字式。

比例尺的大小是比值的大小:分母越大,比例尺越小。

比例尺与图幅的关系:比例尺相同,图幅较大则表示的实地范围大;图幅相同,比例尺较大则实地范围小;同一实地范围,比例尺较大则实地范围较大;比例尺扩大(缩小)到原图的A倍(1/A),则图幅面积扩大(缩小)到原图的A2 倍(1/A2)。

(2)地图上的方向

在小区域的平面图上,应遵循“上北下南、左西右东”的规则定方向。在有指向标的地图上,要根据指向标确定方向。在实地使用地图时,必须使图上的方向与地面实际方向一致。

在经纬网地图上,要以经纬线来判定方向。经线指示南北方向,纬线指示东西方向。东西方向是相对方向,互为东西的A和B两点,A既可被定为是在B的东面,也可被认为是在B的西面,一般在地图上按“就近原则”来确定方向关系。

在经纬网地图上定方向,首先是要判断该图所示区域位于北半球还是南半球。一般方法是分析图中给出的纬度的变化方向,若纬度是向北方向增大,则位于北半球,反之则位于南半球。

以极地为中心的地图上,可以按地球自转方向或经度大小的变化趋势来判断方向。

在地图上各种地理事物如山脉、河流、城市、境界线等,都可以用一定的符号来表示。不同的形状、大小、颜色、结构的图形及不同字体的文字和数字注记,能反映地理事物的空间位置、数量和质量等基本特征。

要学会阅读地图,除具备地图知识外,还须有相关的地理知识。

例如阅读世界海洋渔业资源图,分析世界四大渔场分布特点时,须了解世界洋流的分布;地球上气压带和风带的分布规律,则是阅读世界洋流分布图的必不可少的基础知识。

2.阅读地图的要领

(1)先读图名

图名是一幅地图的“眼睛”,它常常概要地表明地图所示的区域和主题内容。例如“中国工业布局的变化图”不仅表明了地图所示区域是中国,还表明了地图所示内容是中国工业布局的时空变化。

(2)细辨图例

当地图上出现多项地理事物的空间分布时,首先可从图例中找出各项地理事物的名称,然后分门别类辨识它们的分布特点。

(3)重视主要地理分界线

地理分界线是判断地理事物分布的重要依据。如我国地势阶梯分界线、我国季风区与非季风区分界线、我国外流区域与内流区域分界线、我国东部暖温带与亚热带分界线等。另外还有一些重要的洲界线、国界线等也不可忽视。

(4)抓住位置或形象特征

可通过地理事物的位置或形象特征来认识其分布。如,大连位于辽东半岛的南端;深圳位于珠江口东岸,珠海位于珠江口西岸。再如法国的轮廓近似“六边形”,意大利的轮廓貌似“靴子”,智利的轮廓形似“长剑”。

(5)跟踪空间轨迹

寻找一个比较熟悉的,或有一定意义的地理事物,如城市、铁路、公路、河道、边界线等,再沿某一方向顺序去阅读。

例如阅读“沪宁抗地区主要城市分布图”,可以上海为起点,先向西北方向依铁路线由近及远串起一组城市,依次为江南的苏州、无锡、常州、镇江、南京、马鞍山、芜湖等,并注意长江以北的主要城市有南通、扬州等,张家港在长江与京沪线之间;再沿沪杭线向西南方向由近及远串起—组城市,依次为嘉兴、杭州,然后向东沿铁路线读出绍兴、宁波。

(6)分析判断

在地图上了解某一地理事物的空间分布特点时,可以从整体到局部作层层剖析,找出规律,最后进一步分析成因。

例如阅读“中国稻谷主要产区图”时,可读出稻谷产区主要分布在我国的东部季风区,而西部广大的地区,除了新疆西部有一些零星的分散产区外,其余地区几乎无稻谷产区分布;在东部季风区,稻谷产区又主要集中分布在秦岭——淮河一线以南地区。这说明我国稻谷主要产区的分布是不平衡的,最后可以从成因上作进一步分析。

(7)注意辅图

有些地图配有辅图,如地图册和课本中的日本图都有主图和辅图两部分,阅读时就要注意主图与辅图的关系及相对位置。

四、季节的判断和地球运动关系

1、根据各类型光照图判断季节

2、根据地球公转判断季节

以北半球为例,当地球公转至远日点时,速度最快,太阳直射南半球,,为一月初,即冬季。当地球公转至远日点时,速度最慢,太阳直射北半球,为七月初,即夏季。

3、根据日出日落方向判断季节

北半球某地某天如果太阳从东北升起,西北落下,则北半球白昼长于黑夜为夏半年,南半球白昼短于黑夜为冬半年;如果太阳从东南升起,西南落下,则北半球白昼短于黑夜为冬半年,南半球白昼长于黑夜为夏半年。

4、根据日出日落时间判断季节

北半球日出时间早于6点, 日落时间晚于18点,则白昼长于12小时,为夏半年;相反如果日出晚于6点,日落早于18点,白昼短于12小时,则为冬半年。

5、根据北斗七星斗柄指向判断季节

随着地球公转到不同位置,在夜间某一固定时间看,会出现春、夏、秋、冬不同,斗柄分别指东、南、西、北四个不同的方位。故有“斗柄朝南,全天皆夏;斗柄指北,全天皆冬”的说法。

6、根据等温线的弯曲判断季节

下垫面性质不同,在不同的季节分布的等温线弯曲方向不一样,尤其明显的是海陆的差异。规律:因海陆热力性质的差异,无论南北半球,一月大陆等温线向南凸,七月大陆等温线向北凸。

7、根据气压中心分布判断季节

下垫面的比热不同,在不同的季节气温高低不一样,造成不同的高低气压活动中心。规律:北半球当亚洲高压强盛时为冬季,西北太平洋上高压强盛时为夏季。

8、根据洋流流向判断季节

大洋中的洋流一般不随季节改变流向,惟有北印度洋海区的洋流为季风洋流。冬季受东北季风的影响,洋流向西流,呈逆时针方向流动;夏季时受西南季风的影响,洋流向东流,呈顺时针方向流动。例如:从科伦坡驶向亚丁湾的轮船顺水顺风时,说明是冬季。

9、根据河流流量大小判断季节

世界上大多数河流的主要补给形式是雨水补给,使降水量多有季节差异,所以河流的流量随季节而变化。例如:当我国长江口流量大增时,恰逢长江中下游的梅雨期。尼罗河水量大增时是北半球的夏季,因为尼罗河水量的变化,取决于发源于热带草原的青尼罗河6-9月的定期泛滥。

10.根据海水盐度变化判断季节

海水盐度的高低,主要取决于蒸发量和降水量之差。另外还受洋流、河流淡水稀释的影响。大范围看:北纬60度比南纬60度海水盐度低,主要原因是北纬60度处陆地面积广阔,极锋锋面降水丰沛,对海水起到了稀释作用,且夏季盐度低于冬季。小范围看:长江口及杭州湾地区,当2.8%等温线曲线接近陆地,说明淡水的稀释作用不强,河水水量小。

五、太阳高度角的计算和应用

太阳高度角(太阳高度)—是指太阳光线与地平面的夹角。

(高中生地理2005年第1期第40页)

思考:乌鲁木齐的正午太阳高度比北京小4度,地方时比北京迟1小时56分,问乌鲁木齐的地理坐标是多少。

1. 太阳高度的日变化规律

正对太阳光的经线上(即太阳直射点所在的经线)太阳高度角大,晨昏线上太阳高度为00,正午时太阳高度最大。

(1) 应用太阳高度角日变化规律解答地方时问题。

(2) 太阳高度角对气温日变化的影响

某地所获得的太阳辐射能量的多少与太阳高度角成正比

太阳高度角大,太阳辐射经过大气的路程短,被大气削弱的部分就少,等量的太阳辐射散布的面积就小,单位面积上获得的太阳辐射能就多。

(3) 与方位的关系:

如图所示二分日,早晨从正东方升起,黄昏从正西方落下;

北半球大部分地区,夏半年早晨从东偏北方向升起,黄昏从西偏北方向落下;冬半年早晨从东偏南方向升起,西偏南方向落下;

正午时太阳居正南方天空。

(4)与时刻的关系:

二分日晨线上为6点,昏线上为18点。冬半年纬度越高日出时间越晚,日落时间越早,白昼时间越短。

(5)与物体影子长短的关系:太阳高度越高,影子越短,太阳高度越小,影子越长,直射时没有影子。

(6)与物体影子朝向的关系:

取决于太阳直射点的位置,一般太阳方位与物影朝向相反,但极点一致。

(7)正午日影影长的计算:

正午太阳高度的正切关系。

2.正午太阳高度角的季节变化规律

H = 900 - │ρ- δ│

(ρ为当地地理纬度,δ为直射点纬度,冬半年取负值,夏半年取正值。)

H1 – H2 =ρ1 –ρ2 (两地的太阳高度差=两地的纬度差)

(1)正午太阳高度的年变化规律

时间变化:北回归线以北或南回归线以南地区:夏至日最大,冬至日最小

回归线之间地区:有两次极大值(直射),两次极小值。

纬度变化:二分日:由赤道向两极递减

夏至日:北回归线以北地区达极大值,南半球达极小值

冬至日:南回归线以南地区达极大值,北半球达极小值

一年中极大值与极小值的差值:热带范围内,正午太阳高度的年变化值由赤道向南北两侧逐渐增加,从23026′增大到46052′;温带范围内,正午太阳高度的年变化值均为46052′,寒带范围内,正午太阳高度的年变化值由极圈向极点逐渐减小,从46052′减小到23026′,

由此可见正午太阳高度从太阳直射点所在的纬度向南北两侧逐渐减小(极夜区除外);从南北半球来看,太阳直射点所在的半球各地都是昼长夜短,纬度越高,白昼越长,极点周围有极昼现象,另一个半球的情况正好相反。

由以上几种情况分析可知,太阳直射点移近时,正午太阳高度逐渐增大,远离时,正午太阳高度逐渐减小(极点周围的极昼极夜区除外)。从冬至到夏至,北半球各地白昼逐渐增长;从夏至到冬至,北半球各地白昼逐渐减小(北极点周围的极昼极夜区除外)。南半球的情况正好和北半球的相反。

(2)正午太阳高度变化规律的应用

①与太阳直射点的纬度位置的关系

离太阳直射点的纬度位置越远或时间越长,正午太阳高度越小

②与物影变化规律的关系

正午太阳高度的变化影响物影朝向和长短的变化。

北回归线以北的地区:物影朝北,夏至日最短,冬至日最长

南回归线以南的地区:物影朝南,夏至日最短,冬至日最长

南北回归线之间的地区:物影朝北,也可以朝南,且直射时无影子

③与房间采光的关系:

一般情况下正午太阳高度角越大,照射到房间面积越小,即夏季照射面积小,冬季照射面积大

北回归线以北地区,太阳光从南窗射入;

南回归线以南地区,太阳光从北窗射入;

回归线之间的地区南窗和北窗均可射入

④与楼房间距的关系

楼房间距主要考虑冬季的采光条件

楼房底层采光条件取决于楼高与当地θ冬至日的正午太阳高度用公式表示为L = 两楼楼高相同的条件下,纬度越高,南北间距应该越大

⑤与黄赤交角大小的关系:

黄赤交角的变化会导致一个地方正午太阳高度的变化:

若黄赤交角变大,对于温带和寒带地区来言,冬至日正午太阳高度变小,夏至日变大;对于热带地区来讲,冬至日和夏至日均变小;若黄赤交角变小,则相反。若黄赤交角变大,极昼极夜范围变大。

⑥与太阳能热水器的关系:

热水器支架倾角与正午太阳高度互余的条件下,太阳能热水器的热能利用率最高。

为了更有效地利用太阳能,从理论上讲热水器的倾角随季节的变化进行调节。

⑦判断山地自然带在南坡和北坡的分布高度

一般情况下由于向阳坡正午太阳高度大,得到的光热多,背阴坡得到的太阳光热少,因此在相同高度上,阳坡温度较高,阴坡温度较低,从而影响到自然带在阳坡和阴坡的分布高度。

⑧测定某地的大致经纬度。

太阳直射点的纬度与出现极昼的最低纬度是互余的,而且在同一半球。

太阳直射点的纬度==900—出现极昼的最低纬度

极点的太阳高度==太阳直射点所在的纬度

海道测量学

《海道测量学》 殷晓冬 陈跃 张晓明 张立华 编著

IHO关于海道测量学和海道测量的定义如下:

海道测量学(Hydrography)是对地球表面可航行水域及其毗邻的沿岸地区的自然特征进行测量和描述的一门应用科学,其主要目的是为航海导航提供服务。(That branch of applied science which deals with the measurement and

description of the physical features of the navigable portion of the earth’s

surface and adjoining coastal areas,with special reference to their use for the

purpose of navigation)

海道测量(Hydrographic Survey)是测定与水体相关的数据为主要目的的测量。海道测量观测的主要数据有:水深、底质、潮流、潮汐以及为满足测量和导航需要的沿岸地形要素和固定物标位置。(A survey having for its principal purpose the determination of DATA

relating to bodies of water.A hydrographic survey may consist of the

determination of one or several of the following classes of data:DEPTH of

waterconfiguration and NATURE OF THE BOTTOMdirections and force of

CURRENTSHEIGHTS and TIMES of TIDES and water stagesand location of

topographic features and fixed objects for survey and navigation purposes.)

从上述定义可以看出,严格的意义上看,海道测量是对地球上的海底和毗邻的沿岸地区,以及湖泊、河流、港口和其它形式水域进行测定和描述,其中水深测量是主要工作。海道测量的产品主要有各种纸制和电子海图、潮汐表、航路指南、航标表、无线电助航设备、港口资料和航海通告等。

海洋测量的保障作用主要体现在海洋运输、海岸带管理、海洋资源勘察、环境保护、海洋科学研究、国际交往等民用领域和国防建设等军事领域。

海道测量的基本内容:

大地控制测量(Geodetic

Control Surveying ) :大地控制测量的任务是为海道测量工作确立平面和高程系统。另一重要任务是准确测定灯塔、灯桩、信号杆等人工和自然的助航标志,满足海上定位和导航的需要。

海岸地形测量(Coastal

Topographic Surveying ) :目的是与水深测量相拼接为海图编绘提供陆部要素。其主要任务是测定海岸线、干出滩、明礁、岛屿、区域界限、码头、防波堤、水上建筑物、水下管线标志、道路、河流、居民地、土质及植被等地形要素。海岸地形测量的宽度视需要和情况而定,一般为图上1cm,比例尺小于1:

1、万为图上0.5cm。

水深测量(Depth Measurement ) :海道测量的中心工作,目的是为海图编绘提供水深和航行障碍物等海部要素。水深测量是海洋定位与测深两项工作的有机结合,目前主要采用水面船只进行水深测量。测量船在按一定的间隔和方向布设的测深计划线上航行,以一定的时间间隔采集定位与水深数据,经改正后获得各点准确的深度,从而完善地显示海底地貌。

水深测量的定位方法主要有光学仪器定位、无线电定位、卫星定位和水下声标定位。测深手段主要有回声测深仪、侧扫声纳、多波束测深系统、多换能器扫测系统、机载激光测深和卫星遥感测深等。目前水深测量已经实现数字化测量,利用水深测量自动化系统,完成数据采集与处理。

其他各种测量(Various

Measurement ):

潮汐观测(Tidal Observation ) :设立验潮站观测水位的目的,一是为了确定各站的多年平均海面、深度基准面、各分潮的调和常数;二是为了获取测深时刻测得深度的水位改正数,进行水位改正。为了掌握海区潮汐变化规律,在选定的合适位置建立验潮站。设立水尺或设置自动验潮仪,记录水位的变化情况;埋设水准标石,进行水准联测,确定验潮站零点等。验潮站按其观测时间的长短和作用,分为长期站、短期站、临时站和定点站四种类型。

底质探测(Bottom Sampling ) :底质探测就是获取海底底质的分布情况,为舰船选择锚泊地点和布设水中兵器提供资料。底质探测一般采用机械式采泥器获取底质样品和超声波探测两种方式。

水文观测(Oceanographic

Features Observation ) :水文观测的内容有两项:

一是测定港口、锚地、航道等重要海区表层流的最大流速和流向;二是为了改正水声仪器测得的深度,测定海区各水层的温度、盐度、密度或声速。

海区资料调查(General

Investigation ) :为编写航路指南、兵要地志等各种文献,需对测区内与航行和军事活动有关的气象、交通等要素的现时和历史情况,作全面系统的调查研究与分析整理。

海道测量的分类 :世界上各个国家的海道测量分类各不相同。海道测量的分类有按测量的区域分类,也有按照测量的等级分类。

区域分类

我国目前按照区域进行分类,《GB海道测量规范》根据测区距陆地的远近以及海底地形的复杂程度通常将海道测量分为四类:

1 港湾测量 :在港湾、锚地和进出港航道水域进行的海道测量。港湾水浅海底地形复杂,航道和口门狭窄,一般需要测绘大比例尺地图。

2 沿岸测量 :在距离陆地10海里海域内的海道测量。沿岸水域海底地形比较复杂,岛屿、礁石和浅滩众多,通常采用1:

1、万—1:5万比例尺测图。

3 近海测量 :在距离陆地10—200海里海域内的海道测量。近海海域开阔,海底平坦,通常采用1:5万—1:20万比例尺测图。

4 远海测量 :在距离陆地200海里以外海域的海道测量。远海海域是十分开阔的深海,可以采用小于1:20万比例尺测图。

测量等级分类

1 特等测量 :该等级测量是最严格的测量等级,只适用于龙骨下的富余深度为临界深度的海区测量。

2 一等测量(A 级) :该等级测量适用于水深较浅的海区,可能存在自然或人工的障碍物对水面船只的航行安全构成威胁,但是该区域的富余深度大于上面提到的特等测量的要求。

3 一等测量(B 级) :该测量等级适用于水深较浅100米的海区,对该海区的一般描述即可满足船只的安全航行要求。

4 二等测量 :该测量等级是限制最少的等级,适用于那些一般性描述即可满足船只安全航行的海区。

各国海道测量机构为保证航行的安全必须对测量区域选择合适的测量等级。

海道测量基准

1 平面基准

海道测量的平面基准通常采用统一规定的坐标系,目前世界上各个国家一般采用各自的平面坐标系,我国目前统一规定的坐标系为北京-54(BJ54)坐标系,其与地心坐标系的转换关系采用国家统一使用的转换参数或满足标准精度要求的区域性转换参数。

我国海道测量采用高斯-克吕格投影和墨卡托投影两种投影方式。高斯-克吕格投影分带有1.5度带、3度带和6度带三种。

我国海道测量的平面控制基础是国家大地网(点)。按照平面控制精度,海道测量控制点分为海控一(以H1表示)和海控二(以H2表示)级点以及测图点(以HC表示)。海控点的分布,应满足水深测量和海岸地形测量为原则。

详情参阅《GB海道测量规范》

2 垂直基准

我国的垂直基准分为陆地高程基准和深度基准两部分。陆地高程基准采用1985年国家高程系统,是青岛验潮站自1952年至1979年10个19年平均海面的平均值,在全国范围内是统一的。对于远离大陆的岛礁,其高程基准可采用当地平均海面。

我国深度基准为理论深度基准面,由于理论深度基准面从当地平均海面起算的理论最低潮面,深度基准是区域性的。一般应采用水准联测等方法确定高程基准和深度基准两者之间的差值。深度基准面一经确定且在正规水深测量中采用,一般不得变动。

灯塔、灯桩的灯光中心高度从平均大潮高潮面起算。

海岸线以平均大潮高潮时所形成的实际痕迹进行测绘。

海道测量水深测量主要由定位和测深两部分组成。目前用于测深的设备主要分为声学测深系统和非声学测深系统。声学测深系统主要有单波束回声测深仪(SBES)、多换能器扫测系统(MTSS)、侧扫声纳(SSS)和多波束测深系统(MBES)。非声学测深系统主要有人工设备(测深杆和水铊)、机械式扫测系统、机载激光测深系统(ALS)和遥感测深系统等。

《IHO海道测量标准》对水深测量的仪器评述如下:

1单波束测深仪在浅水区已达到厘米级以上的准确性。在市场上各种不同频率和脉冲速率的测深设备可以满足大多数用户,特别是海道测量人员的需要。

2旁侧声纳技术在障碍物探测方面已达到很高的水平。目前尽管旁侧声纳技术的使用还受到较慢船速的限制(最大5-6节),但是在港口和航道探测中,旁侧声纳技术在探测线之间的航行障碍物方面具有广泛的应用。许多海道测量机构考虑在上述区域强制使用该技术,并且测线重叠率经常规定为100%或更高。

3多波束测深技术正在迅速发展,如果采用合理的工作方式,以及系统在探测航行障碍物中具有足够的分辨力,则该技术在准确性和全覆盖探测海底地形方面具有巨大的潜力。

4作为一种新技术,机载激光测深在清澈的浅水区域具有很高的工作效率。机载激光测深可以达到50米或更深。

尽管出现了这些新技术,但是单波束回声测深仪(SBES)仍然保留使用,当今这种传统仪器在全世界仍用于深度测量。单波束回声测深仪已由模拟记录发展为数字式记录,其精度和精确度已有极大提高,可以满足大部分海道测量要求。数字式测深仪、运动姿态传感器、卫星定位系统(如GPS系统)及数据采集软件结合在一起可以极大地减少测量人员数量,并极大地提高测量效率。

多波束测深仪(MBES)已成为海底全覆盖测量的最为有效的工具。越来越多的国际海道测量组织成员国采用多波束测深技术采集水深数据用于出版新版海图。这种现象说明多波束测深技术越来越得到各成员国的信任。尽管多波束测深仪有令人印象深刻的功能,但对测量设计人员、操作人员和测量检查人员而言,尽可能多地掌握多波束测深仪(MBES)的操作原理对测深数据的内插和评估都是至关重要的。

机载激光测深系统(ALS)目前只有极少数国际海道测量成员国使用。机载激光测深系统(ALS)是至今采集深度数据最快的测深系统,且特别适用于近岸浅水海域。但是机载激光测深系统(ALS)的部件很昂贵,因此该系统使用得还不普遍。

ALS(Airborne Laser System)机载激光系统是集激光测距技术、定位技术、惯导技术、数字信号处理技术和图形处理等多种高新技术为一体的以飞机为载体的新型遥感信息获取与处理系统。ALS的特点是覆盖面广、测点密度高、测量周期短、所需人员少、低消耗、易管理、高机动性及可以对船只无法到达的海域实施水深测量,是传统水面船艇进行水深测量的有力辅助手段,正日益受到海道测量界的重视。

目前国际上具有代表性的商用机载激光测深系统有瑞典的Hawk Eye、美国的Shoals、澳大利亚的Labs以及加拿大的Larsen500。

机载激光测深系统(ALS)的工作原理是根据激光具有单色性高、方向性强、相干性好、强度大等特点,利用绿光或蓝绿光易穿透海水,而红外不易穿透海水的光学特性,在飞机平台上安装激光器分别按固定垂直向下和椭圆形或带修正的横向透水扫描方式,向海面发射红外光束和蓝绿光束两种不同波长的激光。红外光被海面完全反射,而蓝绿光则能够透射海水至海底反射,激光器光电接收系统通过接收处理海面的红外光和海底的蓝绿光反射信号,测定两束反射信号的时间差,从而求得海面入射点至海底的瞬时海水深度Z和激光器至瞬时海面的高度H。

式中:c——为光速

Δt——为红外光和蓝绿光两束反射信号时间差

n——海水的折射率

t——红外光经海面反射的往返时间

对于不同的机载激光测深系统,由于海水对不同波长的激光吸收相差很大,所选用的激光发射器发射的红外光和蓝绿光的波长也有所不同。其中红外光束的波长一般在1000-1100毫微米之间,垂直海面发射。绿色光束的波长则选择被称为“海洋光学窗口”的波长为520-535毫微米之间的蓝绿光波段,因为海水对此波段的光吸收相对最弱。绿色光束采用向下垂直于飞行方向进行直线扫描或圆弧扫描,以增加一条航线上测深点的数量。机载激光测深系统的扫描覆盖范围取决于扫描的角度和飞行的航行高度,而测深点的密度取决于激光束的发射频率。

由于海表面的波浪、潮汐、水体中悬浮物的类型数量、底质的反射散射特性、入射角和强度、光接收机的时间分辨率、飞机的姿态特征等因素及他们的相互作用都会直接影响水深测量量程和测深精度,因此研究激光在海水中的传播特性和激光在不同底质中的反射和散射特性,研究海水表面因素的影响,消除动态因素影响等,是提高水深测量量程,保证系统有足够的测量精度的关键技术问题。

机载激光测深系统的组成

激光发射器、光接收机、微机控制、采集、显示、存贮、处理及辅助设备等。具体可分为机载系统和地面数据处理系统两部分。

第三章 岸线测量

海岸是海水面与陆地的交汇地带。

海岸线是近似于平均大潮高潮的痕迹所形成的水陆分界线。可根据海岸植物的边线、土壤、植物的颜色、湿度、硬度,以及流水、水草、贝壳等冲积物来确定。普通海岸线的高度,接近于平均大潮高潮面。小潮高潮时的海陆分界线称为低岸线。岸线测量的目的是测定海图中的陆部要素,精确地描述海岸线和海岸地貌是海道测量的任务之一。

助航标志(Aids to Navigation) 是指浮标、灯船、信标、雾号、灯标、定向信标、灯塔、灯桩、导标、无线电定位系统以及标绘在海图上或在其它出版物上颁布的有关航行安全的设备或标志。其作用是确定航道方向,反映航道宽度,标示航道上的水下航行障碍物,引导舰船安全航行。

助航标志一般可分为陆上标志和水上标志。

第四章 其他海道测量工作

潮汐观测

潮汐观测的基准面是平均海面和深度基准面。

设立验潮站观测水位的目的,一是为了获得测深时刻测得深度的水位改正数,进行水位改正。二是为了确定各站的多年平均海面、深度基准面、各分潮的调和常数,进行潮汐分析和预报。所以潮汐观测应贯穿于海道测量的全过程。

根据潮汐的特点,可将潮汐分为四种类型:

正规半日潮:在一个太阴日(约24小时50分)内,有两次高潮和两次低潮,相邻的高低潮之间的潮差几乎相等。

正规日潮:在一个朔望月内大多数天是日潮的性质,少数发生不正规半日潮。

不正规半日潮:在一个太阴日内,也有两次高潮和两次低潮,但相邻的高低潮之间的潮差不等,涨落潮时间也不等,且不等是变化的。

不正规日潮:在一个朔望月内大多数天是不正规半日潮,但有几天会出现一日一次高潮和一次低潮的日潮的潮汐类型。

潮汐观测的主要手段有:验潮水尺、验潮井、压力式验潮仪和声学验潮仪等。

《IHO海道测量标准》规定:潮汐观测的全部误差,包括时间误差,在特等测量时不大于±5cm,其它测量不大于±10cm。为使水深数据在将来使用先进的卫星观测技术时还可以充分利用,潮汐观测应当与低潮基准面(通常为最低天文潮面)和地心坐标系(如WGS-84)进行联测。

底质探测

为了获得海图上所需的海底表层底质分布的资料。目的是:

一满足军事与航海的需要:选择锚地、潜艇潜坐地点、登陆地段、停泊场以及布设水雷等。

二为经济建设和科学研究提供资料。航道整治、港口设计。

三为了更好了解与分析海底地貌。

参考国际海道测量组织海图规范和海图图式等相关分类方法,《中国海图图式》(GB12319-1998)对海底底质进行了分类。

在海道测量工作中,测图比例尺大于1:50000时,一般采用高斯投影。

测深密度(Sounding Density):海道测量工作中单位面积内获取的水深点数量。

航行障碍物

在海道测量工作中,必须对危为船只航行安全的障碍物,如礁石、沉船、浅地等,均应准确测定其位置、最浅深度(或干出高度或高程)、范围和性质,对新发现的航行障碍物要及时上报。

航行障碍物的分类根据其性质一般可分为三类:

1 礁浅类(Rocks):明礁、干出礁、适淹礁、暗礁、点礁、险恶地和特殊深度等;

2 沉船类(Wrecks):沉船和沉船残骸等。

3 其它类(Other Obstructions)铁锚、飞机残骸和铁木或混凝土桩柱等。

明礁:理论大潮高潮面以上的孤立岩石,即干出高度&gt(H+L),其干出高度(高程)是从当地平均海面起算的;

干出礁:理论大潮高潮面以下,深度基准面以上的孤立礁石,即干出高度&lt(H+L),其干出高度从理论深度基准面起算;

适淹礁:适淹礁可以分为低潮适淹礁和高潮适淹礁,低潮适淹礁的干出高度=0、高潮适淹礁的干出高度=(H+L);

暗礁:理论深度基准面以下的孤立礁石,即深度&gt0。

测线

对于一定海域内进行的水深测量作业,测量前要进行海区技术设计,根据测量区域的特点和作业要求,有规律地布设计划测线。在测量中测船按照预定的计划测线航行,不断修正航行中与计划测线的偏移量,使测船尽可能地航行在计划测线上,这样才能保证采集的水深数据符合要求。因此在测量前有效、合理地确定这些计划测线与测量中控制测船尽可能航行在计划测线上,不仅是确保水深测量工作与成果资料满足作业规范与要求的前提,也是高效率实施多波束水深测量作业的重要保障[2] 。

测线布设的原则是根据多波束系统的技术指标和调查区的水深、水团分布状况,以最经济的方案完成调查区的全覆盖测量,以便较为完善地显示海底地形地貌和有效的发现水下障碍物。测深线可分为主测线、补充测线和检查线(联络测线)三种。主测深线是测深线的主体,它担负着探明整个测区海底地形的任务;补充测深线起着弥补主测深线的作用;检查测深线是检查以上测深线的水深测量质量,以保证水深测量的精度[2] 。

测线的布设

多波束系统进行海底地形测量的测线布设要根据任务要求和测区条件来确定。测线布设的技术要求有以下几点:

(1)在满足精度要求的前提下,根据多波束系统在不同水深段的覆盖率的大小,把调查区按水深划分成若干区域,每个区域的水深变化均在多波束系统相同覆盖率的范围内[2] 。

(2)测线布设要尽可能地平行等深线,这样就可以最大限度地增加海底覆盖率,保持不变的扫描宽度。如果可能的话,也要尽量使纵摇降至最小,以避免换能器充气。

(3)测线布设原则是,主测线沿海底地形的总体走向平行布设,检查线垂直于主测线[2] 。

(4)测线间距以保证相邻测幅有10%的相互重叠为准,并根据实际水深情况及相互重叠程度进行合理调整,避免探测盲区。在每次测量实施过程中,至少布设1条跨越整个测区并与主测线方向垂直的检查线。

(5)在测线设计时要尽量避免使设计测线穿越主要水团,并根据海水垂直结构的时空变化规律采集海水声速剖面。如果水团完全混合,就在每天调查的开始、中间和结束时采集;如果水团不完全混合,至少在每个新水团的开始和结束时采集;如果难以确定,就在每条测线的开始和结束时采集[2] 。

在测深间距一定的情况下,应正确选择测深线的方向。依据不同的海域情况,测深线可采用以下3种方向布置[2] 。

(1)测深线垂直于水流方向。使测深线正好通过地貌变化比较剧烈和有代表性的地方,有利于全面如实地反映测区的海底地形。这是最常用的方法。

(2)测深线与水流轴线成45’方向。通常用于狭窄海道和可能存在礁石、水下沙洲或其他障碍物地区的水深测量。由于斜距大于平距,因而它比垂直于水流轴线的测深线容纳的水深点更多,有利于反映狭窄海道的地形。

(3)测深线成辐射线方向。大多用于岛屿的延伸部分或孤立的岛屿周围的水域。辐射线方向布设使测深线间距内密外疏,不仅有利于暗礁、浅滩的发现,而且近岛部分水深点较密,也有利于选择适宜的靠船及登陆地点[2] 。

平缓区域布线

对于深度变化比较平缓的区域,测线布设时采用平行布线,测线之间的间距由海水深度和多波束测深仪的扫幅宽度决定[2] 。

特殊地形布线

对于测区内有海沟等剧烈深度变化的区域,测线布设时应根据测区的不同深度将测区分成若干区域,并根据深度设置测线的间距。多波束测深仪中对于不同的海深对应着不同的条带宽度,如哈尔滨工程大学研制的某型条带测深仪中条带的宽度浅海时(水深小于等于150m)为四倍海深,深海时(水深大于150m)为两倍海深[2] 。

检查测深线和补充测深线

一般每15~20条测线设计一条垂直于主测线的检查线,用于在测量开始时进行系统校正,并且可以在测量过程中检测测量精度。

补充测深线用于对于测线设计中未包括的区域,进行补充测量,以最大限度的提高测量精度。

检查测深线和补充测深线没有一定的规律,所以在系统中采用了鼠标绘图形式绘制

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!