当前位置:新励学网 > 建筑专业 > 接收机门限电平测试是()设备的必测项目。

接收机门限电平测试是()设备的必测项目。

发表时间:2024-07-22 18:50:14 来源:网友投稿

接收机门限电平测试是()设备的必测项目。

A 、数字微波

B 、移动基站

C 、通信卫星

D 、波分复用

参考答案:

【正确答案:A】

2021一级建造师 《通广实务》施工技术-传输系统及核心网的测试

传输设备网元级测试 (高频考点)

SDH设备测试: (2004、2013)

注:知道测试项目有那些?知道各测试项目分别使用哪些仪表?会补充测试连接图?大概理解每种测试项目的定义?

①平均发送光功率。

使用图案发生器(非必须)、光功率计。

光发送机平均功率在S参考点上的测试值。

②发送信号波形(眼图)。

使用通信信号分析仪(高速示波器)。

观察光脉冲形状特征,即信号波形。

③光接收机灵敏度和最小过载光功率。(2013案例、2015案例)

使用SDH传输分析仪(包括图案发生器、误码检测仪)、可变衰耗器、光功率计。(2012、2014、2018案例画测试连接图)

输入信号在1550nm区,误码率达到10的负12次方时(2010),设备输入端口处的平均接收光功率最小值和最大值。

④抖动测试:使用SDH传输分析仪(含抖动模块)。

输入抖动容限及频偏:

设备输出不产生误码的情况下,允许输入端信号携带抖动或频偏的最大值。

输出抖动:也称固有抖动。

SDH设备的支路和群路端口,在输入端无人为抖动和频偏输入的情况下,输出端所产生的最大抖动。

SDH设备的映射抖动和结合抖动:

映射抖动:由于SDH设备解复用侧支路映射,而在PDH支路输出口产生的抖动。

结合抖动:SDH设备解复用侧由于支路映射和指针调整结合作用,而在PDH支路输出口产生的抖动。(2005)

再生器抖动转移特性:

设备输出信号抖动与输入信号抖动的比值随抖动频率变化的关系,一般用抖动传递函数表示。

波分复用设备测试: (每块板卡相当于1个设备)

一是波长转换器(OTU)测试: (2006、15、19。2012和13案例)

与SDH设备测试基本一致的项目:平均发送光功率、发送信号波形(眼图)、光接收机灵敏度和最小过载光功率、输入抖动容限和抖动转移特性。

注:抖动测试项目不完全和SDH设备一致。

①中心频率与偏离。

使用多波长计和光谱分析仪。

设备工作时的实际中心频率与标称值的偏差,一般不应超出系统选用信道间隔的正负10%。

②最小边模抑制比。

使用光谱分析仪。

最坏发射条件时,全调制下主纵模的平均光功率和最显著边模的光功率之比。

③最大-20dB带宽。

使用光谱分析仪。

相对最大峰值功率跌落20dB时的最大光谱带宽。

二是合波器(OMU)测试:

使用可调激光器光源、偏振控制器、光功率计。

①插入损耗及偏差。(2018)

穿过OMU某一特定光通道引起的功率损耗,插入损耗偏差则是插入损耗测试值与插入损耗平均值之差的绝对值。

②极化相关损耗。

极化状态改变造成的插入损耗的最大值。

三是分波器(ODU)测试:

使用可调激光器光源、偏振控制器、光功率计和光谱分析仪。

①插入损耗及偏差;

②极化状态损耗;与合波器相同,注意信号传递方向不同。

③信道隔离度。

四是光纤放大器(OA)测试:

使用光谱分析仪、光功率计。(2009)

①输入光功率范围。

实测范围应大于标称范围。工程中只测试工作状态的输入光功率数值。

②输出光功率范围。(2006)

实测范围应小于标称范围。工程中只测试工作状态的输出光功率数值。

③噪声系数。

五是光监测信道(OSC)测试:

DWDM系统在正常业务信道外增加一个波长信道专用于对系统的管理。

①光监测信道光功率。

使用光功率计。

②光检测信道工作波长及偏差。

使用光谱分析仪或多波长计。

PTN设备测试:

注:PTN设备最大的特点就是数据包的传送。

①PDH、SDH接口性能测试。(同SDH)

②以太网接口性能测试。(2014案例)

平均发送光功率。

接收灵敏度和最小过载光功率。

吞吐量。

使用以太网网络分析仪。

指设备可以转发的最大数据量。

时延。

指设备对数据包接收和发送之间延迟的时间。单机测试的数据主要体现网络节点设备的性能。

过载丢包率。

指设备在不同负荷下转发数据过程中丢弃数据包占应转发数据包的比例。

背靠背。(2017)

反映设备对于突发报文的容纳能力。

传输系统级测试 (2005、11、17。2007案例。)

传输系统级测试一般在单机测试完成后进行,主要包括系统性能指标测试和系统功能验证两部分。对于DWDM系统,需要先进行信噪比测试(因系统首先需进行各业务通道的信噪比优化);对于SDH和PTN系统,打通光路后就可以进行系统测试。

①DWDM系统光信噪比测试。

使用光谱分析仪。(2019案例)

②DWDM系统中心波长及偏差。

使用光谱分析仪、或多波长计(高精度测试时)。

③系统输出抖动测试。

包括OTU、SDH、PDH各速率接口的输出抖动。

④系统误码测试。

包括PDH、SDH各速率接口的数字通道误码测试,波分复用系统STM-N光通道误码测试。

使用SDH分析仪(包括图案发生器、误码检测器)

注:教材画了单向测试和环回测试2种图。

所谓单向:输入信号设备和测试结果设备放在系统两端。

所谓环回:两个设备放在一段,对端设备收发环起来形成通路。

⑤以太网链路测试。

使用以太网测试仪。

主要包括链路时延和长期丢包率测试。

⑥ATM链路测试。

⑦系统保护倒换测试。

包括STM—N、SDH、PTN系统复用段和通道保护倒换业务中断时间测试。

⑧设备冗余保护功能验证。

⑨交叉连接设备功能验证。

注:说是系统功能验证,但这2项是设备功能验证。

⑩网管功能验证。

LTE设备通电前检查:

设备通电前在机房主电源端子上测量电源电压。

交直流设备不得安装在同一机架内。

LTE系统检查测试:

局数据配置应正确。

LTE工程初验测试项目:

初验包括核心网功能测试、性能测试、业务测试、网购测试、安全测试、可靠性测试。

①功能测试。

②业务测试。

在所有网元工程测试完成后进行。

③性能测试。

测试核心网设备呼叫失败率。

如果现场不具备测试条件,可提供宜认证的测试报告。

④网管测试。

接口功能测试,测试北向接口功能。

注:所谓北向接口,指与网管之间的接口。

⑤安全测试。

⑥可靠性测试。

计费不准确率应小于十万分之一。

**有缘看到这里,麻烦顺手点个赞!谢谢。****

射频指标

描述射频信号指标

接收灵敏度这应该是最基本的概念之一,表征的是接收机能够在不超过一定误码率的情况下识别的最低信号强度。

讲灵敏度的时候我们常常联系到SNR(信噪比,我们一般是讲接收机的解调信噪比),我们把解调信噪比定义为不超过一定误码率的情况下解调器能够解调的信噪比门限(面试的时候经常会有人给你出题,给一串NF、Gain,再告诉你解调门限要你推灵敏度)。那么S和N分别何来?

S即信号Signal,或者称为有用信号;N即噪声Noise,泛指一切不带有有用信息的信号。有用信号一般是通信系统发射机发射出来,噪声的来源则是非常广泛的,最典型的就是那个著名的-174dBm/Hz——自然噪声底,要记住它是一个与通信系统类型无关的量,从某种意义上讲是从热力学推算出来的(所以它跟温度有关);另外要注意的是它实际上是个噪声功率密度(所以有dBm/Hz这个量纲),我们接收多大带宽的信号,就会接受多大带宽的噪声——所以最终的噪声功率是用噪声功率密度对带宽积分得来。

发射功率的重要性,在于发射机的信号需要经过空间的衰落之后才能到达接收机,那么越高的发射功率意味着越远的通信距离。

那么我们的发射信号要不要讲究SNR?譬如说,我们的发射信号SNR很差,那么到达接收机的信号SNR是不是也很差?

这个牵涉到刚才讲过的概念,自然噪声底。我们假设空间的衰落对信号和噪声都是效果相同的(实际上不是,信号能够通编码抵御衰落而噪声不行)而且是如同衰减器一般作用的,那么我们假设空间衰落-200dB,发射信号带宽1Hz,功率50dBm,信噪比50dB,接收机收到信号的SNR是多少?

接收机收到信号的功率是50-200=-150Bm(带宽1Hz),而发射机的噪声50-50=0dBm通过空间衰落,到达接收机的功率是0-200=-200dBm(带宽1Hz)?这时候这部分噪声早已被“淹没”在-174dBm/Hz的自然噪声底之下了,此时我们计算接收机入口的噪声,只需要考虑-174dBm/Hz的“基本成分”即可。

这在通信系统的绝大部分情况下是适用的。

我们把这些项目放在一起,是因为它们表征的实际上是“发射机噪声”的一部分,只是这些噪声不是在发射信道之内,而是发射机泄漏到临近信道中去的部分,可以统称为“邻道泄漏”。

其中ACLR和ACPR(其实是一个东西,不过一个是在终端测试中的叫法,一个是在基站测试中的叫法罢了),都是以“Adjacent Channel”命名,顾名思义,都是描述本机对其他设备的干扰。而且它们有个共同点,对干扰信号的功率计算也是以一个信道带宽为计。这种计量方法表明,这一指标的设计目的,是考量发射机泄漏的信号,对相同或相似制式的设备接收机的干扰——干扰信号以同频同带宽的模式落到接收机带内,形成对接收机接收信号的同频干扰。

在LTE中,ACLR的测试有两种设置,EUTRA和UTRA,前者是描述LTE系统对LTE系统的干扰,后者是考虑LTE系统对UMTS系统的干扰。所以我们可以看到EUTRA ACLR的测量带宽是LTE RB的占用带宽,UTRA ACLR的测量带宽是UMTS信号的占用带宽(FDD系统3.84MHz,TDD系统1.28MHz)。换句话说ACLR/ACPR描述的是一种“对等的”干扰:发射信号的泄漏对同样或者类似的通信系统发生的干扰。

这一定义是有非常重要的实际意义的。实际网络中同小区邻小区还有附近小区经常会有信号泄漏过来,所以网规网优的过程实际上就是容量最大化和干扰最小化的过程,而系统本身的邻道泄漏对于邻近小区就是典型的干扰信号;从系统的另一个方向来看,拥挤人群中用户的手机也可能成为互相的干扰源。

同样的在通信系统的演化中,从来是以“平滑过渡”为目标,即在现有网络上升级改造进入下一代网络。那么两代甚至三代系统共存就需要考虑不同系统之间的干扰,LTE引入UTRA即是考虑了LTE在与UMTS共存的情形下对前代系统的射频干扰。

讲SEM的时候,首先要注意它是一个“带内指标”,与spurious emission区分开来,后者在广义上是包含了SEM的,但是着重看的其实是发射机工作频段之外的频谱泄漏,其引入也更多的是从EMC(电磁兼容)的角度。

SEM是提供一个“频谱模版”,然后在测量发射机带内频谱泄漏的时候,看有没有超出模版限值的点。可以说它与ACLR有关系,但是又不相同:ACLR是考虑泄漏到邻近信道中的平均功率,所以它以信道带宽为测量带宽,它体现的是发射机在邻近信道内的“噪声底”;SEM反映的是以较小的测量带宽(往往100kHz到1MHz)捕捉在邻近频段内的超标点,体现的是“以噪声底为基础的杂散发射”。

如果用频谱仪扫描SEM,可以看到邻信道上的杂散点会普遍的高出ACLR均值,所以如果ACLR指标本身没有余量,SEM就很容易超标。反之SEM超标并不一定意味着ACLR不良,有一种常见的现象就是有LO的杂散或者某个时钟与LO调制分量(往往带宽很窄,类似点频)串入发射机链路,这时候即便ACLR很好,SEM也可能超标。

首先EVM是一个矢量值,也就是说它有幅度和角度,它衡量的是“实际信号与理想信号的误差”,这个量度可以有效的表达发射信号的“质量”——实际信号的点距离理想信号越远,误差就越大,EVM的模值就越大。

很难定义EVM与ACPR/ACLR的定量关系,从放大器的非线性来看,EVM与ACPR/ACLR应该是正相关的:放大器的AM-AM、AM-PM失真会扩大EVM,同时也是ACPR/ACLR的主要来源。

但是EVM与ACPR/ACLR并不总是正相关,我们这里可以找到一个很典型的例子:数字中频中常用的Clipping,即削峰。Clipping是削减发射信号的峰均比(PAR),峰值功率降低有助于降低通过PA之后的ACPR/ACLR;但是Clipping同时会损害EVM,因为无论是限幅(加窗)还是用滤波器方法,都会对信号波形产生损伤,因而增大EVM。

PAR(信号峰均比)通常用CCDF这样一个统计函数来表示,其曲线表示的是信号的功率(幅度)值和其对应的出现概率。譬如某个信号的平均功率是10dBm,它出现超过15dBm功率的统计概率是0.01%,我们可以认为它的PAR是5dB。

所以对于正弦波,假设他的峰值是4,那么他的峰值功率就是4^2=16;而他的平均功率计算

t = [0:0.01:4*pi]

a = 4 * sin(t)

% b = fft(a, 1024)

% plot(abs(b))

result = sum(a.^2)/length(t)

计算得到的结果是8,也就是4^2/2=8;所以他的PAR是3dB。

PAR是现代通信系统中发射机频谱再生(诸如ACLP/ACPR/Modulation Spectrum)的重要影响因素。峰值功率会将放大器推入非线性区从而产生失真,往往峰值功率越高、非线性越强。

在GSM时代,因为GMSK调制的衡包络特性,所以PAR=0,我们在设计GSM功放的时候经常把它推到P1dB,以得到最大限度的效率。引入EDGE之后,8PSK调制不再是衡包络,因此我们往往将功放的平均输出功率推到P1dB以下3dB左右,因为8PSK信号的PAR是3.21dB。

UMTS时代,无论WCDMA还是CDMA,峰均比都比EDGE大得多。原因是码分多址系统中信号的相关性:当多个码道的信号在时域上叠加时,可能出现相位相同的情况,此时功率就会呈现峰值。

LTE的峰均比则是源自RB的突发性。OFDM调制是基于将多用户/多业务数据在时域上和频域上都分块的原理,这样就可能在某一“时间块”上出现大功率。LTE上行发射用SC-FDMA,先用DFT将时域信号扩展到频域上,等于“平滑”掉了时域上的突发性,从而降低了PAR。

这里的“干扰指标”,指的是出了接收机静态灵敏度之外,各种施加干扰下的灵敏度测试。实际上研究这些测试项的由来是很有意思的。

我们常见的干扰指标,包括Blocking,Desense,Channel Selectivity等。

Blocking实际上是一种非常古老的RF指标,早在雷达发明之初就有。其原理是以大信号灌入接收机(通常最遭殃的是第一级LNA),使得放大器进入非线性区甚至饱和。此时一方面放大器的增益骤然变小,另一方面产生极强非线性,因而对有用信号的放大功能就无法正常工作了。

另一种可能的Blocking其实是通过接收机的AGC来完成的:大信号进入接收机链路,接收机AGC因此产生动作降低增益以确保动态范围;但是同时进入接收机的有用信号电平很低,此时增益不足,进入到解调器的有用信号幅度不够。

Blocking指标分为带内和带外,主要是因为射频前端一般会有频带滤波器,对于带外blocking会有抑制作用。但是无论带内还是带外,Blocking信号一般都是点频,不带调制。事实上完全不带调制的点频信号在现实世界里并不多见,工程上只是把它简化成点频,用以(近似)替代各种窄带干扰信号。

对于解决Blocking,主要是RF出力,说白了就是把接收机IIP3提高,动态范围扩大。对于带外Blocking,滤波器的抑制度也是很重要的。

When the defined useful signal coexist with blocking signal, throughput loss less than 1%

useful signal = PREFSENS + 14dB, 20MHz, -79.5dBm

这里我们统称为“邻信道选择性”。在蜂窝系统中,我们组网除了要考虑同频小区,还要考虑邻频小区,其原因可以在我们之前讨论过的发射机指标ACLR/ACPR/Modulation Spectrum中可以找到:因为发射机的频谱再生会有很强的信号落到相邻频率中(一般来说频偏越远电平越低,所以邻信道一般是受影响最大的),而且这种频谱再生事实上是与发射信号有相关性的,即同制式的接收机很可能把这部分再生频谱误认为是有用信号而进行解调,所谓鹊巢鸠占。

举个例子:如果两个相邻小区A和B恰好是邻频小区(一般会避免这样的组网方式,这里只是讨论一个极限场景),当一台注册到A小区的终端游走到两个小区交界处,但是两个小区的信号强度还没有到切换门限,因此终端依然保持A小区连接;B小区基站发射机的ACPR较高,因此终端的接收频带内有较高的B小区ACPR分量,与A小区的有用信号在频率上重叠;因为此时终端距离A小区基站较远,因此接收到的A小区有用信号强度也很低,此时B小区ACPR分量进入到终端接收机时就可以对原有用信号造成同频干扰。

如果我们注意看邻道选择性的频偏定义,会发现有Adjacent和Alternative的区别,对应ACLR/ACPR的第一邻道、第二邻道,可见通信协议中“发射机频谱泄漏(再生)”与“接收机邻道选择性”实际上是成对定义的。

When the defined useful signal coexist with interference signal, throughput loss less than 1%

Blocking是“大信号干扰小信号”,RF尚有周旋余地;而以上的AM Suppression, Adjacent (Co/Alternative) Channel Suppression (Selectivity)这些指标,是“小信号干扰大信号”,纯RF的工作意义不大,还是靠物理层算法为主。

这种描述的是绝对的同频干扰,一般是指两个同频小区之间的干扰模式。

按照之前我们描述的组网原则,两个同频小区的距离应该尽量远,但是即便再远,也会有信号彼此泄漏,只是强度高低的区别。

对于终端而言,两个小区的信号都可以认为是“正确的有用信号”(当然协议层上有一组接入规范来防范这种误接入),衡量终端的接收机能否避免“西风压倒东风”,就看它的同频选择性。

动态范围温度补偿和功率控制很多情况下是“看不到”的指标,只有在进行某些极限测试的时候才会表现出它们的影响,但是本身它们却体现着RF设计中最精巧的部分。

发射机动态范围表征的是发射机“不损害其他发射指标前提下”的最大发射功率和最小发射功率。

“不损害其他发射指标”显得很宽泛,如果看主要影响,可以理解为:最大发射功率下不损害发射机线性度,最小发射功率下保持输出信号信噪比。

最大发射功率下,发射机输出往往逼近各级有源器件(尤其末级放大器)的非线性区,由此经常发生的非线性表现有频谱泄漏和再生(ACLR/ACPR/SEM),调制误差(PhaseError/EVM)。此时最遭殃的基本上都是发射机线性度,这一部分应该比较好理解。

最小发射功率下,发射机输出的有用信号则是逼近发射机噪声底,甚至有被“淹没”在发射机噪声中的危险。此时需要保障的是输出信号的信噪比(SNR),换句话说就是在最小发射功率下的发射机噪声底越低越好。

在实验室曾经发生过一件事情:有工程师在测试ACLR的时候,发现功率降低ACLR反而更差(正常理解是ACLR应该随着输出功率降低而改善),当时第一反应是仪表出问题了,但是换一台仪表测试结果依然如此。我们给出的指导意见是测试低输出功率下的EVM,发现EVM性能很差;我们判断可能是RF链路入口处的噪声底就很高,对应的SNR显然很差,ACLR的主要成分已经不是放大器的频谱再生、而是通过放大器链路被放大的基带噪声。

接收机动态范围其实与之前我们讲过的两个指标有关,第一个是参考灵敏度,第二个是接收机IIP3(在讲干扰指标的时候多次提到)。

参考灵敏度实际上表征的就是接收机能够识别的最小信号强度,这里不再赘述。我们主要谈一下接收机的最大接收电平。

最大接收电平是指接收机在不发生失真情况下能够接收的最大信号。这种失真可能发生在接收机的任何一级,从前级LNA到接收机ADC。对于前级LNA,我们唯一可做的就是尽量提高IIP3,使其可以承受更高的输入功率;对于后面逐级器件,接收机则采用了AGC(自动增益控制)来确保有用信号落在器件的输入动态范围之内。简单的说就是有一个负反馈环路:检测接收信号强度(过低/过高)-调整放大器增益(调高/调低)-放大器输出信号确保落在下一级器件的输入动态范围之内。

这里我们讲一个例外:多数手机接收机的前级LNA本身就带有AGC功能,如果你仔细研究它们的datasheet,会发现前级LNA会提供几个可变增益段,每个增益段有其对应的噪声系数,一般来讲增益越高、噪声系数越低。这是一种简化的设计,其设计思想在于:接收机RF链路的目标是将输入到接收机ADC的有用信号保持在动态范围之内,且保持SNR高于解调门限(并不苛求SNR越高越好,而是“够用就行”,这是一种很聪明的做法)。因此当输入信号很大时,前级LNA降低增益、损失NF、同时提高IIP3;当输入信号小时,前级LNA提高增益、减小NF、同时降低IIP3。

一般来讲我们只在发射机作温度补偿。

当然接收机性能也是受到温度影响的:高温下接收机链路增益降低,NF增高;低温下接收机链路增益提高,NF降低。但是由于接收机的小信号特性,无论增益还是NF的影响都在系统冗余范围之内。

对于发射机温度补偿,也可以细分为两部分:一部分是对发射信号功率准确度的补偿,另一部分是对发射机增益随温度变化进行补偿。

现代通信系统发射机一般都进行闭环功控(除了略为“古老”的GSM系统和Bluetooth系统),因此经过生产程序校准的发射机,其功率准确度事实上取决于功控环路的准确度。一般来讲功控环路是小信号环路,且温度稳定性很高,所以对其进行温度补偿的需求并不高,除非功控环路上有温度敏感器件(譬如放大器)。

对发射机增益进行温度补偿则更加常见。这种温度补偿常见的有两种目的:一种是“看得见的”,通常对没有闭环功控的系统(如前述GSM和Bluetooth),这类系统通常对输出功率精确度要求不高,所以系统可以应用温度补偿曲线(函数)来使RF链路增益保持在一个区间之内,这样当基带IQ功率固定而温度发生变化时,系统输出的RF功率也能保持在一定范围之内;另一种是“看不见的”,通常是在有闭环功控的系统中,虽然天线口的RF输出功率是由闭环功控精确控制的,但是我们需要保持DAC输出信号在一定范围内(最常见的例子是基站发射系统数字预失真(DPD)的需要),那么我们就需要将整个RF链路的增益比较精确的控制在某个值左右——温补的目的就在于此。

发射机温补的手段一般有可变衰减器或者可变放大器:早期精度稍低以及低成本精度要求较低的情况下,温补衰减器比较常见;对精度要求更高的情形下,解决方案一般是:温度传感器+数控衰减器/放大器+生产校准。

讲完动态范围和温度补偿,我们来讲一个相关的、而且非常重要的概念:功率控制。

发射机功控是大多数通信系统中必需的功能,在3GPP中常见的诸如ILPC、OLPC、CLPC,在RF设计中都是必需被测试、经常出问题、原因很复杂的。我们首先来讲发射机功控的意义。

所有的发射机功控目的都包含两点:功耗控制和干扰抑制。

我们首先说功耗控制:在移动通信中,鉴于两端距离变化以及干扰电平高低不同,对发射机而言,只需要保持“足够让对方接收机准确解调”的信号强度即可;过低则通信质量受损,过高则空耗功率毫无意义。对于手机这样以电池供电的终端更是如此,每一毫安电流都需锱铢必量。

干扰抑制则是更加高级的需求。在CDMA类系统中,由于不同用户共享同一载频(而以正交用户码得以区分),因此在到达接收机的信号中,任何一个用户的信号对于其他用户而言,都是覆盖在同一频率上的干扰,若各个用户信号功率有高有高低,那么高功率用户就会淹没掉低功率用户的信号;因此CDMA系统采取功率控制的方式,对于到达接收机的不同用户的功率(我们称之为空中接口功率,简称空口功率),发出功控指令给每个终端,最终使得每个用户的空口功率一样。这种功控有两个特点:第一是功控精度非常高(干扰容限很低),第二是功控周期非常短(信道变化可能很快)。

在LTE系统中,上行功控也有干扰抑制的作用。因为LTE上行是SC-FDMA,多用户也是共享载频,彼此间也互为干扰,所以空口功率一致同样也是必需的。

GSM系统也是有功控的,GSM中我们用“功率等级”来表征功控步长,每个等级1dB,可见GSM功率控制是相对粗糙的。

这里提一个相关的概念:干扰受限系统。CDMA系统是一个典型的干扰受限系统。从理论上讲如果每个用户码都完全正交、可以通过交织、解交织完全区分开来,那么实际上CDMA系统的容量可以是无限的,因为它完全可以在有限的频率资源上用一层层扩展的用户码区分无穷多的用户。但是实际上由于用户码不可能完全正交,因此在多用户信号解调时不可避免的引入噪声,用户越多噪声越高,直到噪声超过解调门限。

换而言之CDMA系统的容量受限于干扰(噪声)。

GSM系统不是一个干扰受限系统,它是一个时域和频域受限的系统,它的容量受限于频率(200kHz一个载频)和时域资源(每个载频上可共享8个TDMA用户)。所以GSM系统的功控要求不高(步长较粗糙,周期较长)。

讲完发射机功控,我们进而讨论一下在RF设计中可能影响发射机功控的因素(相信很多同行都遇到过闭环功控测试不过的郁闷场景)。

对于RF而言,如果功率检测(反馈)环路设计无误,那么我们对发射机闭环功控能做的事情并不多(绝大多数工作都是由物理层协议算法完成的),最主要的就是发射机带内平坦度。

因为发射机校准事实上只会在有限的几个频点上进行,尤其在生产测试中,做的频点越少越好。但是实际工作场景中,发射机是完全可能在频段内任一载波工作的。在典型的生产校准中,我们会对发射机的高中低频点进行校准,意味着高中低频点的发射功率是准确的,所以闭环功控在进行过校准的频点上也是无误的。但是如果发射机发射功率在整个频段内不平坦,某些频点的发射功率与校准频点偏差较大,因此以校准频点为参考的闭环功控在这些频点上也会发生较大误差乃至出错。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!