天然骨料开采,在河漫滩多采用()。
天然骨料开采,在河漫滩多采用()。
A、正铲
B、反铲
C、索铲
D、推土机
参考答案:
【正确答案:C】
怎样进行水工混凝土天然建筑材料砂砾石的工程地质勘探工作
蔡石泉 倪志文 刘述淮
天然建筑材料——砂砾石的普查与勘探工作,在水利建设工程地质勘测中占相当重要的地位,因为水工混凝土建筑物的造价,在某种程度上,就取决于建筑材料的质量、储量以及开采运输条件,也取决于建筑材料产地距离施工场地的远近;同时其他附属建筑物如:铁路、公路、混凝土拌合楼等的位置与交通路线的辅设也决定于砂石材料的产地。
一、天然建筑材料产地的选择
修建水工建筑物所需的天然建筑材料,通常有坚硬的石质岩石以及符合一定技术要求的松散和粘结岩石。这里只介绍作为建筑混凝土坝所需之骨料——砂砾石的产地选择。
首先应在所设计水工建筑物的布置地区的附近进行勘测。如果建筑物附近地区缺乏砂砾石材料时,才能向较远的地段进行勘测。所选择产地之储量应满足设计要求之数量,质量应符合技术规范的要求(具体要求见后),除此而外也应考虑交通运输条件,最好是与运输干线毗连。
砂砾石产区一般皆布置在河流的高漫滩及低漫滩上或砂砾层复盖甚薄的一级阶地上。在这些地区进行地质勘探的同时应进行水文地质工作,了解当地含水层厚度,以及该层之涌水量、渗透系数,以便考虑产地之供水条件与开采方法。如产地适于机械化开采,则应保证产区之数量足够机械不间断开采数月才行。剥土层不宜太厚,过厚将增加不必要的工作量,最好剥土层体积不超过有用岩层(砂砾石层)体积之15%~20%,特殊情况可不遵守上述条件。
二、在不同设计阶段中砂砾石材料勘探的内容与要求
在河流技术经济报告阶段,一般不进行专门性的建筑材料调查,而主要是依据过去出版的或未出版的和案资料,以及踏勘资料和访问当地居民的资料,来解决有关建筑材料的问题。天然建筑材料的勘测工作,通常只分两个设计阶段——初步设计和技术设计阶段。在各个阶段的勘探结果中应阐明下列各点:
(1)砂砾石产地位置;(2)与设计阶段相应的矿产储量类别;(3)砂砾石层的产状质量,以及冲洗的必要性;(4)产地的水文地质条件;(5)剥土层的厚度及性质;(6)产地与坝址之距离以及交通运输的条件;(7)产地的开采条件。
(1)初步设计阶段
根据普查工作结果,选择有希望的离施工场地较近的产地,按固体矿产产地进行B级勘探。为了获得B级储量以及评定其质量,应该初步确定产地地形、地层和地质构造、水文地质条件,岩层产状和砂砾石质量。因此应采取试样按混凝土骨料要求进行砂砾石质量的实验室研究。1:5000或1:
1、0000的地质测绘,以便查明河流发育史,作为布置勘探线寻找砂砾石之依据。勘探线一般以垂直河床为原则,勘探线间距一般不超过400m,在每条勘探线上布置二个或三个以上的勘探坑孔,而坑与孔的分布最好是在纵横方向都是互相间隔的(如图1)。勘探方法则以试坑最好,其次为冲击钻。所有坑孔应穿过全部有用岩层(砂砾岩层)而确定其下部为下垫层时始能停止。
工作结果应合乎B级要求,因而应说明:
(1)剥土层的平均厚度及性质;(2)砂砾石的成层性质、分布面积、厚度、有无不适用的夹层存在,砂砾石是否需要冲洗;(3)砂砾石质量,可用目测以及利用试验室研究结果进行分析;(4)通向施工场地最适宜路线;(5)水文地质条件以及地表水年内的变化;(6)最有利的开采方法。
图1 钻孔和试坑间隔布置示意图
(2)技术设计阶段
技术设计阶段的勘探工作是在初步设计阶段勘探工作结束后所挑选出最好的一个或一个以上的产区内进行的。技术设计阶段中的砂砾石材料产地之储量,应以A2级精确度进行计算。
技术设计阶段勘探线的布置,一般是在上阶段的勘探线间平行插入一条新的勘探线,使新旧勘探线的间距不超过200m,这样就形成了A2级储量的勘探网。
勘探工作中除取样进行混凝土骨料要求试验外,并应在产地取样作半生产性冲洗试验以及混凝土抗压强度试验。根据实验室研究结果,最后确定建筑材料的适用性;并详细计算产地之储量以及可开采量。最后提出最合理最经济的开采方法。
(3)施工详查阶段
一般不进行施工详查阶段的天然建筑材料勘探,只有在以前进行的勘测工作,由于一系列的原因,在水力枢纽范围内,没有确定天然建筑材料的设计要求的储量(A2级的)时,才在编制施工详图阶段,进行勘探工作和取样。在这种情况下,同样是把砂砾石的储量由B级提高到A2级。
三、勘探方法
当勘探队接到设计方面的任务书,而将勘探坑孔布置图确定以后,交测量人员进行野外定位,施工前由技术人员到现场检查后才进行开挖。如已布置的试坑位置不适宜开挖时,则可将试坑改为钻孔或将其位置略加移动。在移动坑孔位置时,必须考虑新的坑孔位置尽可能不离所在的勘探线,否则将破坏整个勘探网,而给储量计算带来不必要的麻烦。
勘探方法系利用人力冲击钻进与试坑开挖。
(1)试坑开挖工作
一般砂砾石产区多分布在河漫滩上,因此勘探试坑的开挖将可能大部分在地下水位以下进行,由于地层松散,更加上地下水的流动冲刷,将会把砂砾石层中的细小颗粒全部冲掉,而引起砂砾石的坍塌,直接影响到工人的安全。因此不用支撑是不能进行工作的。在这种情况下,我们一般采用的是“倒塔式”支撑。
图2“倒塔式”支撑侧视图与俯示图
“倒塔式”支撑是从上而下,从大到小每层收缩的数个正方形木框所组成(如图2)。其形状如宝塔的倒观。这种支撑一般每隔0.5m缩小0.20~0.25m。试坑之最终截面一般不得小于 1.0m×1.0m,故试坑开口截面的选定,应根据试坑深度及支撑缩小的次数而推算。
试坑中的地下水,应根据地下水位高低以及涌水量大小,选择不同马力抽水机进行排水。
在均一的砂砾石层中,试坑开挖一般是较为顺利的。如遇流砂层及大孤石则应进行特殊处理。流砂层在0.3~0.5m厚时(可用钢筋或手摇钻试探),可以采用秸料或芦苇以及其他杆状植物,编成与试坑一样长的小卷下入坑内,使其与支撑连接好,防止流砂上涌。
如含水量不大流砂层较厚时(1.0~2.0m)则可以用5mm之木板排桩(板桩头部必须铁皮包裹),打干试坑支撑内部与外部(根据实际情况决定),可以边挖边打井边下框架,直至穿过流砂层为止。
大孤石的处理如限于工地上设备简陋,可以采用坑口架设三角架,架置滑车绞链,利用绳索捆牢大孤石用“绞链”绞起,然后再用水平“滑车绞链”拉出坑口。对于已超出坑口直径的孤石,可采用爆破法(一般这种情况很少)。
用试坑开挖的优点是:
(1)截面大,地质值班人员可以下入试坑内,直接从坑壁上观察到砂砾石的一般情况,可以精确地测出有害夹层或凸镜体的位置、厚度以及天然状态下的产状。这对正确评定砂砾石层质量与取样提供了准确的资料;(2)开挖工作不会破坏砂砾石的天然颗粒级配。这些优点是用钻孔做不到的。
(2)人力冲击钻
砂砾石材料勘探钻孔之最小孔径(内径)不得小于150mm。这是因为它能保证把最粗的砾石从孔内提取上来。勘探砂砾石的钻进方法一般分为:
1)钻杆回转式钻进(通常称推磨式钻进),这种钻进常采用的钻头有:勺形钻头及盘形钻头。
2)大锤冲击式钻进,钻进时使用卡簧钻头为最宜。此法在砾石粒径小于150mm的产区应用最为适宜。
3)钻杆冲击式钻进,所采用的钻头有:十字钻头、工字钻头、一字钻头、活门钻头等。
4)钢绳冲击式钻进,使用活门钻头(砂层一般常用活门钻头)。
钻孔结构是勘探工作中最重要的一件事,结构选择是否正确,设备是否适当,对达到深度保证正常钻进和正确地采取岩样和试样,起决定性作用。如地层简单岩层致密,则可不下套管保护孔壁或防止钻孔坍塌,钻孔结构很简单,反之则较为复杂。
选择钻孔结构一般根据:理想地质柱状图,钻孔计划深度、试样采取质量要求,以及钻探方法、钻具的类型和钻进方法。
采用钻孔进行勘探,可以钻得很深,也可在水上进行勘探,这是它的优点。但钻孔内所取出之岩样,容易被破坏其天然级配,对其质量的了解不如试坑全面。
四、地质记录与取样
地质记录与取样两项工作,是地质工作中最基本也是应该最熟练的工作。
记录工作是项细致而又复杂的工作,在工作中常因原始记录质量不高,而给内业整理工作造成很多困难。在这时尽管发现了不少问题,可是去解决这些问题是很不容易的,因为坑孔已经填塞或坍塌,是无法重新校对和检查的。所以做记录的地质同志必须完全懂得建筑材料勘探中的地质要求,在工作中应细致与详尽的记述坑孔内的情况。
现将三门峡工程某砂砾石材料产地在进行 A2级勘探时,第425号试坑的地质记录(经过室内整理)作为一个例子,来说明地质记录的格式以及内容(图3)。
图3 柱状图
从柱状图的地质说明中,我们不仅知道每层的名称而且可以清楚地了解每层较详细的情况,以及一些水文地质资料,这就对内业整理工作,提供了正确的资料,也帮助整理同志更清楚地了解每个坑孔的具体情况。
从坑孔中所取出的样品分岩样与试样两种:岩样每隔0.5m或变层时取样一次,每次装一小袋,上注明取样地点、深度、编号以及取样日期等,岩样作为检验坑孔地质情况的标本,其作用相当于岩心,仅供地质人员和检查之用。
试样则系送实验室分析之用,一般取样工作系在砂砾石层中进行,对覆盖层与砂砾石层下之无效岩层是不进行采样的。在砾石与砂层中采用全巷取样,即在有效岩层——砂砾石中从上至下取出来一定的重量作为试样,其方法可在坑壁上挖0.4~0.5m宽,深0.25~0.5m的立槽,从槽内取出的砂砾石则作为试样。如在地下水以下或岩层松散,难在坑壁上刻槽,则用倍数吊桶法,即五桶砂砾石中选一桶,或五铲中选择一铲作为试样,当然也可用其他倍数进行取样。所取试样如超过筛分试验所需量,可用四分法缩减,一般试样取1000kg,然后将此1000kg砂砾石试样进行野外的筛分。这种野外筛分的目的是可以找到一个更接近自然形态更有代表性的天然颗粒级配,比从送实验室的几十千克试样所筛分出成果,要精确得多。野外筛分后可以分别得到最大粒径数,以及150~80mm,80~40mm,40~20mm,20~5mm等的百分数(砂由实验室进行)。筛分后应分别从各种不同粒径的试样中选取3~4kg,进行岩石成分、砾石颗粒表面性质、形状等试验工作(见表1、2)。
表1 砾石颗粒表面性质形状鉴定
表2 砾石的岩石成分鉴定
以上野外简易试验的工作,是和实验室工作紧密配合的,因此野外所获得的资料应随试样交由实验室整理,以便提出完整的试验成果。
送实验室进行骨料要求试验的试样的重量,一般是150kg,这150kg的试样必须要保持它的天然颗粒级配。
在取样过程中,非常重要的一个问题,就是对有害夹层以及有害颗粒(如煤块、粘土块)的处理。无论是倍数吊桶法也好,还是刻槽取样法也好,一般讲,在有效岩层中(砂层及砂砾石层)夹有较薄的粘土夹层或淤泥层时,就应该依照正常的取样方法取样,而不应当将粘土等有害物质选出。因为在正式开采时是不可能一层一点地来挑选那些有害物质的,而是要将有害夹层混在砂砾石中一齐开采出来。所以在勘探时所取的试样应当尽可能与开采时砂砾石质量相接近。
如果这种有害物质或颗粒比较集中,或构成较厚的层次,而其层位在砂砾石层之上部或下部(如图4)。则应分别取样,或将这种层次列为无效层,则不必取样。那么开采时就可以不去开采或者当无效层挖去,这样做对砂砾石质量来讲是没有任何影响的。
图4根据不同的地质情况,进行不同取样的示意图
五、水工混凝土对砂砾石物理性质的一般规定
天然建筑材料无论是野外或室内定名,皆应根据工程地质分类按不同粒径给予适当的名称。工程地质分类与建筑材料分类是有区别的。因此在内业整理分析资料时,应将合乎质量要求的砂砾石层的名称,即原依工程地质分类定名换算成建筑材料分类标准,如不合乎质量要求的砂砾石层则不必换算,而用其原工程地质分类定名与描述。如有效层只有一层,为了工作方便起见也可直接用建筑材料分类定名与描述(参阅表3)。
按松散岩石颗粒成分,可将其组成颗粒分成下列数组:
黄河三门峡水利枢纽工程地质勘察史
建筑材料分类:
表3
在评定砂砾石质量,主要是根据苏联“水工建设中的天然建筑材料技术规范”的规定*。
1.砂砾石混合的质量试验
砂与砾石应按下列不同粒径求出百分比:
天然颗粒级配(混合的,单位mm):>150,150~80,80~40,40~20,20~10,10~5,5~2.5,2.5~1.2,1.2~0.6,0.6~0.3,0.3~0.15,0.15~0.005,<0.005的百分数,以及换算成100%的砾石与砂的百分数(参阅表4,5)。
并应求出砾石中最大粒径D,所谓最大粒径D是指通过该筛的砾石不小于整个试样95%的筛子孔径大小。
2.砾石的质量
表4
3.砂的质量
表5
对砂砾石质量的评价(物理性质方面)主要将试验资料与国家标准进行比较,来分析与研究各产地的砂砾石质量,最后可以根据混凝土抗压强度做出结论。
六、储量计算
储量计算是整理砂砾石材料产区地质资料不可分割的一部分,储量计算的结果,可以获得产区与勘探阶段相适应的砂砾石的数量,从而作为设计的依据。
储量计算可分为:地质储量计算和勘探储量计算两种。在技术经济调查报告阶段,根据地质资料,估计砂砾石分布面积与深度,得出一粗略的储量,或根据少数坑孔计算,则可得到“C”级储量。在初步设计与技术设计阶段时,则应根据勘探坑孔的地质资料进行计算,在勘探网范围内所计算出的结果,属于“B”级或“A2”级,而勘探网范围外所计算出的数量为次一级储量。例如在进行“A2”级,勘探网范围内的储量属于“A2”级,勘探网之外则属于“B”级。这样可以获得A2+B级储量,或B+C级储量。
储量计算的精确度,一般在初步设计阶段时,其计算误差不得超过产地总储量的20%~40%,技术设计阶段的误差不得超过10%~15%。计算数字位数只需达到设计所需提出的相当位数即可。其他位可以零代替(根据И—13规程)。
储量计算方法有:算术平均法;平行断面法;三角法;等值线法等。计算时可以用二种或二种以上方法计算,以便相互校正,具体方法的选择取决于勘探地区的具体情况,一般常用前三种方法。
在岩层厚度、坑孔间距及勘探线的分布不均的情况之下,可采用算术平均法,这种方法很简单,获得结果较正确,即在平面图上圈定储量计算范围,求其面积,然后根据面积内的勘探资料计算平均厚度。
计算公式:
Q=FH(体积法) Q=FHD(重量法)
Q——储量(单位m3/t);F——面积;D——比重;H——平均厚度。
平行断面法:在该面积内沿平行线或接近于平行线排列的坑孔,作垂直剖面图(图5)。
图5 平行断面储量计算平面图
图6 三角形储量计算法示意图
三角法:当坑孔间距不等或勘探线不够规则时,可采用此法。在平面图上联结各勘探点成许多三角形;利用三角形的面积求出储量(图6)。
黄河三门峡水利枢纽工程地质勘察史
a,b——为三角形之底和高;h——为有效岩层之厚度;Q1——为一个三角形之储量;Q1+Q2+Q3+…=Q为产区之总储量。
最后应该计算出覆盖层与有效层之比。
同样也用以上方法计算其覆盖层体积。
表6 平行断面法计算表
七、内业整理与报告的编制
(一)内业整理
一般分下列三个方面:
1.颗粒成分的整理
把在野外以及在试验室内所求得的有效岩层砂砾石颗粒成分,均列入一个汇总表中,同时在这个表中计算出每个坑孔,每层和整个产地砂砾石成分的加权平均值。在地质剖面上分出的扁豆体(凸镜体)和薄夹层的颗粒成分,不单独进行分析,把它们包括在较厚的成分内。有时个别砂砾石层分层不明或成层不经常,那么最好是将几个岩层合并为一个大层,并根据这一个大层计算颗粒成分的加权平均值。
有效层(砂砾石层)的颗粒成分的加权平均值应以表格形式列入本文报告中,把它绘在适用标准曲线图上。如果加权平均颗粒成分的累积曲线没有超出界线,那么砂砾石是适用于水工建筑物混凝土骨料的标准(参阅图7、8)。
图7 混凝土的砾石颗粒成分曲线图
附注:①所谓D最大是指通过该筛的砾石不小于整个样品的95%的筛子孔径大小;
②对混凝土适用的砾石,其颗粒成分不超出斜线面积范围
图8 混凝土的砂砾颗粒成分曲线图
注:对混凝土合适的砂子,其颗粒成分不超出斜线面积范围
加权平均颗粒成分按下列公式计算:
黄河三门峡水利枢纽工程地质勘察史
式中:B——某层颗粒加权平均含量;
b1——第一试验层或第一试验段的同一种颗粒含量;
b2——第二试验层或第二试验段的同一种颗粒含量;
m1、m2…mn——试验段或试验层的厚度。
为了计算加权平均成分,可以采用辅助表(参阅表7、8),在辅助表中写入坑孔编号、取样深度、试验段厚度及试验段厚度乘上颗粒最初百分率含量的结果。在任何情况下全部颗粒的总量都应该等于试验段厚度乘100。每类颗粒的加权平均成分很容易地用试验段总量厚度除以乘数的和求得。
如图-×-×则合乎标准、—×—×则不合乎标准,颗粒偏细。
表7 储量计算表
表8 颗粒成分加权平均计算辅助表(建筑材料分类)
表9 岩石颗粒成分表(建筑材料分类)
在砂砾石混合成分中换算成砂和砾石的总含量,可将不同粒径的砾石的百分含量乘上100。再用砾石的总含量除,用同样的方法也进行砂的换算。
砂和砾石的颗粒换算根据一般所采用的方程式计算:——
对于砾石40:
1、00=10:X、则
(砾石总含量)(某颗粒百分数)
对于砂子60:
1、00=8:X、则
(砂子总含量)(某粒径百分数)
每个坑孔的换算结果均须列入汇总表内,同时在这表内还应该列入各层与整个产地的资料。
2.物理性质的整理
所有试验成果资料,应汇于总表中,列入表中的平均值,如算术平均值一样,根据试验数值计算出。并应列表说明:平均值、变化范围(即最大或最小)和试验次数。
砂与砾石是否适用制备水工混凝土骨料,则必须将物理性质平均指标与国家标准要求相比较的基础上作结论。
3.图件整理工作
砂砾石材料勘探结束后,应提交坑孔检验表、纵横剖面图、平面图等。在地质情况较为简单地区,地质地貌图与坑孔平面布置图可以综合在一起,在技术设计阶段并应提交地下水位等高线图、有用岩层与覆盖层等厚线图。
柱状图的比例尺根据坑孔深度而定,深度在10m上下的坑孔,一般用1:50的比例尺(参阅图2)。
绘制砂砾石材料勘探剖面图的方法与一般地质剖面图没有多大的区别,但为了储量计算方便常将岩层分界线用直线表示。剖面图的比例尺也应根据具体情况确定,总的要求是以能在图上清楚的表示地质情况,地下水位以及取样深度,储量计算界线等为原则。
平面图内容包括两个:一为地质情况,岩层水平分界线,地貌分界线等,地质方面内容要求较为简单不必过于复杂(如产地地质情况的确相当复杂,则应单独绘制地质图)。二为实际材料图,图上的数字必须十分准确,柱状图、剖面图、平面图彼此之间没有矛盾和出入。并在图上注明坑孔编号、高程、水位、砂砾石层厚以及覆盖层厚度等。如为了研究与分析各坑孔质量具体情况,也可以在平面图上表示某些试验项目的指标。并按质量情况,分成数区。
表10××产区砾石质量
表11××产区砂的质量
(二)报告的编制
建筑材料普查与勘探技术报告:通常是工程地质总报告的一个组成部分,它由以下两部分组成:文字和图表附件。文字部分应包括必要的图纸和表格,文字的附录包括颗粒成分总表,岩石物理性质总表以及其他图件等,排列在参考文献目录的后面。
建筑材料产地普查和详细勘探报告通常包括:①绪言;
②普查工作成果;
③勘探成果;
④总的结论。如果建筑材料报告不包括在总报告中,而单独成立一报告时则应增加“区域地质概述”和“区域气候概述”。
在第一部分“绪言”中需指出野外队的任务(所需储量及其用途)和任务的提出者,所设计水力枢纽的简单资料(水力枢纽的主要建筑物及回水高程),野外工作进行时期主要的完成工作量(表格形式)及完成量与计划的比较,野外工作和室内整理工作的执行者。
在第二部分“普查工作成果”中包括普查和初步勘探时的全部资料。每个产地要进行描述,并对整个做出结论。对产地进行描述时,要指出:产地距坝址的相对位置,完成坑孔的数量,地质和水文地质情况,质量符合“C”级的储量,以及有关利用材料的建议。
第三部分“勘探工作成果”最好根据它们的功用分类,然后再详细描述。对每个产地的描述都成为一个单独的章,每章中应包括:①概论;
②产地地质和水文地质简述;
③勘探工作和取样试验;
④质量鉴定;
⑤储量计算;
⑥结论。
在“概论”中应指出:产地的地理位置,产地距施工场地的距离,交通运输及其他情况如何,产地地形特点,地面高程和成因类型。对以前的工作也应加以简略叙述。
在“产地地质和水文地质简述”中,须指出岩层产状特性和成因,各个岩层的颗粒成分及厚度,同时要说明有用岩层及含水情况。
在“勘探工作和取样试验”中,列入完成钻孔的全部资料,坑孔最深最浅,平均的深度、勘探方法、孔径大小、排水情况、检查坑孔号数及数量、勘探线间和线上坑孔间平均距离等。另外还应说明取样方法与数量。
在质量鉴定一节中,包括两种资料:
(1)小颗粒成分资料,附带说明蛮石含量及大小;(2)物理性质及有害杂质物的资料。然后将各项试验成果与国家标准进行比较产地质量估价。
“储量计算”一节中应指出,已经勘探过的面积和计算储量的面积,认为勘探范围内某段不适用的原因,那些属于土层?那些属于有用岩层?储量计算范围应标明在平面与剖面上。并附上储量计算的结果。
结论:在这部分中应指出产地距坝址的位置,砂砾石质量与数量上的简述,有关利用或改善以及今后工作的建议。
最后在“总的结论”中,应写出普查时所调查过的每类产地和已勘探的每一产地的简要情况。然后进行所有产地的比较评述,并提出有关利用或进一步勘探产地的意见。
(原载于《水文地质工程地质》1957年第8期)
可行性论证阶段滑坡勘查要点
1.一般规定
1)可行性论证阶段勘查是滑坡防治工程勘查的重要阶段,应提交含对滑坡机理及防治方案定论的勘查报告。
2)应基本了解滑坡所处地质环境条件,初步查明滑坡的岩(土)体结构,进行稳定性评价,满足制定防治工程方案的地质要求。
3)勘查应结合防治方案可行性论证进行,采用互动反馈方式,合理确定滑坡体(包括滑动面和滑带土)物理力学指标,判定滑坡稳定状态,提出防治工程建议方案。
2.可行性论证阶段滑坡勘查要点
1)查明滑坡的现状,包括:滑坡周界范围、地层结构、主滑方向平面上的分块、分条,纵剖面上的分级滑动带的部位、倾角、可能形状滑带岩土特性等滑坡的诸形态要素。
2)查明引起滑动的主要原因:在调查分析滑坡现状和滑坡历史的基础上,找出引起滑坡的主导因素判断是首次滑动的新生滑坡还是再次滑动的古老滑坡的复活。
3)获得合理的计算参数:通过勘探、原位测试、室内试验、反算和经验比拟等综合分析,获得各区段(牵引段、主滑段和抗滑段)合理的抗剪强度指标。
4)综合测绘调查、工程地质比拟、勘探及室内外测试结果,对滑坡当前和工程使用期内的稳定性做出合理评价。
5)查明滑坡的危害程度,进行滑坡灾害分级(表4-3)。
表4-3 滑坡灾害等级划分
续表
注:引自《滑坡工程勘查(DZ/T0218-2006)》。
6)提出整治滑坡的工程措施或整治方案。对规模较大的滑坡以及滑坡群,宜加以避让防治滑坡宜采用排水(地面水和地下水)、减载、支挡、防止冲刷和切割坡脚、改善滑带岩土性质等综合性措施,且注意每种措施的多功能效果,并以控制和消除引起滑动的主导因素为主,辅以消除次要因素的其他措施。
7)提出监测预测方案。
3.可行性论证阶段环境地质调查要点
1)以收集资料为主,确定工作区地貌单元的成因形态类型,包括:斜坡形态、类型、结构、坡度,以及悬崖、沟谷、河谷、河漫滩、阶地、沟谷口冲积扇等微地貌组合特征、相对时代及其演化历史。
2)以收集资料为主,了解地层层序、地质时代、成因类型,特别是易滑地层的分布与岩性特征和接触关系,以及可能形成滑动带的标志性岩层。
3)以收集资料为主,了解区域断裂活动性、活动强度和特征,以及区域地应力、地震活动、地震加速度或基本烈度。分析区域新构造运动、现今构造活动,地震活动以及区域地应力场特征。
4)核实调查主要活动断裂规模、性质、方向、活动强度和特征及其地貌地质证据,分析活动断裂与滑坡的关系。
5)调查各种构造结构面、原生结构面和风化卸荷结构面的产状、形态、规模、性质、密度及其相互切割关系,分析各种结构面与边坡几何关系及其对滑坡稳定性的影响。
6)调查了解工程岩组,包括:岩体产状、结构和工程地质性质,应划分工程岩组类型及其与滑坡灾害的关系,确定软弱夹层和易滑岩组。
7)了解社会经济活动,包括:城市、村镇、乡村、经济开放区、工矿区、自然保护区的经济发展规模、趋势及其与滑坡灾害的关系。
8)充分收集水文、气象资料。掌握多年平均降雨量、最大降雨量、暴雨及降雨季节、勘查区沟谷最大流量、气温等信息。
4.可行性论证阶段滑坡工程地质测绘要点
1)测绘范围包括后缘壁-前缘剪出口及两侧壁之间的整个滑坡,并外延到滑坡可能影响的一定范围。
2)当采用排水工程进行滑坡防治时应对滑坡外围拟设置的地面排水沟或地下廊道洞口等防治工程所在的地区进行工程地质测绘。
3)当滑坡剪出口下部建筑物可能对下部河流造成堵江时,应测绘包括危害区在内的纵向控制性剖面。
4)地形地貌测绘,包括:宏观地形地貌(地面坡度与相对高差、沟谷与平台、鼓丘与洼地、阶地及堆积体、河道变迁及冲淤等)和微观地形地貌(滑坡后壁的位置、产状、高度及其壁面上擦痕方向滑坡两侧界线的位置与性状前缘出露位置、形态、临空面特征及剪出情况后缘洼地、反坡、台坎、前缘鼓胀、侧缘翻边埂等)。
5)岩(土)工程地质结构特征测绘,包括:周边地层、滑床岩(土)体结构滑坡岩体结构与产状,或堆积体成因及岩性软硬岩组合与分布、层间错动、风化与卸荷带粘性土膨胀性、黄土柱状节理滑动带(面)层位及岩性。
6)滑坡裂缝测绘,包括:分布、长度、宽度、形状、力学属性及组合形态对建筑物开裂、鼓胀或压缩变形进行测绘,现场作出与滑坡关系的判断。
7)调查滑坡体上植被类型(草、灌、乔等)及持水性,马刀树和醉汉林分布部位,池塘与稻田分布及水体特征、坡耕地、果园分布及灌渠。
8)调查滑坡区人类工程活动,包括:开挖切脚或斩腰、道路与车载、民居与给排水、堡坎和晒坝、工程弃渣、采矿或爆破、人防工程或窑洞。
9)初步查明地表水入渗情况、产流条件、径流强度、冲刷作用,以及地表水的流通情况、灌溉、库水位及升降。开展入渗试验,提供初步入渗系数。
5.可行性论证阶段勘探与测试要点
1)初步查明滑坡体的地质结构、滑动面的位置、展布形状、数目和滑带岩土性质,查明地下水情况,采取岩土试样以备试验。
2)可采用主-辅剖面法,不少于一条纵、横剖面布置勘线,勘探线应由钻探、井探、槽探及物探等勘探点构成。纵向勘探线布置宜结合滑坡分区进行,不同滑坡单元均应有主勘探线控制,其两侧可布置辅助勘探线。横向勘探线宜布置在滑坡中部至前缘剪出口之间。
3)勘探点间距应根据滑坡结构复杂程度和规模确定(表4-4)。主勘探线与辅助勘探线间距40~100m。主勘探线勘探点一般不少于3个,勘探点间距40~80m。辅助勘探线勘探点间距一般为40~160m。滑动面平直时间距可大些,反之应密些。一般前后缘勘探点应密些,中部可稀些。少量钻孔可布置在滑坡体外,以便进行地层对比。在预计设置排水和支挡构筑物的地段,应有一定数量的勘探点。勘探点之间用物探方法进行验证连接。滑坡与崩塌勘查地质条件复杂程度划分只分为简单和复杂两类(表4-5)。
表4-4 勘探点线间距布置要求
表4-5 滑坡与崩塌勘查地质条件复杂程度分类
4)勘探方法采用钻探、井探或槽探相结合,并用物探沿剖面线进行探测验证。勘探孔的深度,应穿过最下一层滑动面,并进入滑床3~5m,布设抗滑桩或锚索部位的控制性钻孔进入滑床的深度宜大于滑坡体厚度的1/2,并不小于5m。
5)对结构复杂的大型滑坡体,可采用探硐进行勘探,并绘制大比例尺的展示图,进行照(录)像。要选择合理的掘进和支护方式,严禁对滑坡产生过大扰动。
6)在滑坡体内、滑动面(带)和稳定地层内,均应采取足够数量的岩土试样进行试验。测试其物理、水理与力学性质指标。在探井、探槽或探硐中,对滑带土应取原状土样。无法取原状土样时,可取保持天然含水量的扰动土样进行重塑样试验。
7)初步查明地下水基本特征,包括:地下水的类型、含水层厚度、分布、类型、富水性、渗透性、地下水位变化趋势、地下水流向、流速、流量及其承压性质,主要隔水层的岩性、厚度和分布,地下水化学特征,泉点、地下溢出带、斜坡潮湿带、斜墟两湿带等分布及动态状况。应布设专门性钻孔,或利用其他钻孔进行上述水文地质测试,必要时应设置地下水长期观测孔。
8)应结合钻孔和探井进行地下水位动态观测,并分析地下水的流向、径流和排泄条件、地下水渗透性等。
6.可行性论证阶段施工条件调查要点
1)结合可能采取的滑坡防治工程技术,调查施工场地、工地住房、工作道路的地形地貌,并进行安全评估,测图范围及精度视现场情况酌定。
2)对防治工程所需天然建筑材料分布,对砂、砾石、块石等建筑材料的质量和储量进行踏勘和评估。天然骨料缺乏或质量不符合工程要求时,须对人工料源进行初查。
3)了解滑坡周围水源分布,评价防治工程生活用水需水量和水质,提出供水建议。
7.可行性论证阶段监测要点
1)可行性论证阶段监测应初步了解滑坡变形特征,评估防治的紧迫性和必要性,论证失稳模式及规模,并提出防治意见。
2)监测内容宜以地面变形和位错为主,并包括建筑物变形与开裂。对于明确受地下水动态控制的滑坡,应开展地下水位监测,并同时进行地表水监测。
3)可根据工程地质条件,沿滑坡纵横轴线分别布置一条监测断面,每条断面监测点不少于3个。在勘查区内存在2处以上滑坡情况下,可联合布置监测网。
4)对危害等级为一级且地面变形明显的滑坡,应沿主滑方向布置不少于一条的深部位移监测剖面,并与主勘探剖面方向重合。
5)监测网布置应结合勘查情况,监测点应充分配合钻探、井槽探布设,主要监测点应满足设计阶段使用要求。
6)监测周期可为3~15天。滑坡变形加剧时,必须加密监测,测次及周期视具体情况而定。
7)监测资料分析应配合其他勘查成果,相互校核。
8)及时提交监测报告。监测报告应包括工作概况、监测方法及布网、监测资料分析、结论及建议。对确需防治的滑坡,应提出防治工程设计建议。附图应为监测网布置平面图、位移矢量图、位移和显著地质环境动态的关系曲线图。
8.可行性论证阶段勘查报告要点
勘查报告内容应包括:序言、地质环境条件、滑坡区工程地质和水文地质条件、滑坡体结构特征、滑动带特征、滑坡变形破坏特征及稳定性评价、推力分析、滑坡防治工程方案建议等,并提供相应的平面图、剖面图、专题图、地球物理勘探报告、钻孔柱状图、竖井和探硐展示图、滑坡体等厚线图、地下水等水位线图、岩土体物理力学测试报告、地下水动态监测报告、滑坡变形监测报告等原始附件。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇