如图所示杆件1和杆件2的内力分别为 ()
如图所示杆件1和杆件2的内力分别为 ()
A 、14.14kN;20kN
B 、-14.14kN;20kN
C 、14.14kN;-20kN
D 、0;20kN
参考答案:
【正确答案:D】
根据平面汇交力系平衡条件,由∑X=0,得出杆件1的内力F1=0,由∑Y=0,得出杆件2的内力F2=20kN。
请计算图示桁架中指定杆件1和2的内力
杆件1的内力为0,杆件2的内力为根号2倍的F
首先你可以看出来左侧的方块除了混淆视听毫无用处。比如左侧方块的左边杆件,对下端起矩,会发现上杆件不受力,同理左侧方块杆件的内力均为0。
其次你要计算一下支座的反力:A点X方向受力F,Y方向受力F; B点X方向受力-F,Y方向为0。因为你对右侧方块下面的杆件的左端起矩,会发现如果B点支座Y方向有力则弯矩平衡方程无法成立,所以B的Y方向力为0,所以根据Y方向系统力的平衡方程,A的Y方向受力为F,对整个系统而言现有的力形成了一个逆时针的弯矩,要想平衡这个弯矩,A的X方向反力和B的X方向反力必形成一个顺时针的弯矩且二者大小相同方向相反,所以A的X方向力为F,B的X方向力为-F。
最后杆件1左侧的方块全去掉后发现左侧没有杆件能提供水平力了,由于是二力杆,所以杆件1不受力。所以A点支座的反力应该全部由杆件2传递,A支座水平和数值均为F,所以杆件2受力叠加后为根号二倍的F。
如果你觉得最后的不好理解,你可以单拿出来杆件1,对左端起矩,发现A支座的X方向力通过杆件1的左端点,不产生力矩,只有Y方向的力和杆件2的反力会产生弯矩,而支座A的Y向产生逆时针的弯矩,所以杆件2要提供一个顺时针的弯矩,由于杆件2成45°角,所以其要想提供顺时针为FL的弯矩其内力必为根号二倍的F。而这个力正好平衡了支座的所有反力,使得杆件1不受任何外力作用。
如图所示桁架杆1、杆2、杆3所受的力分别为( )
取整体
∑Fx=0 500-NAx=0 (1)
∑Fy=0 -NAy+NB=0 (2)
∑MA=0 2*NB-2^500=0 (3)
联立解 :NB=500N ,NAy=500N,NAx=500N
节点法 求杆内力,匀设为拉力。
取节点B
∑Fx=0 -S1cosθ-S3=0 (4)
∑Fy=0 S1sinθ+NB=0 (5)
联立解 : S1=-500√2 N(压) ,S3=500N(拉)
取节点C
∑Fy=0 -S2-S1cosθ=0 (6)
S2=500N (拉)
选C
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇