当前位置:新励学网 > 建筑专业 > 地表水可能造成矿山水害的原因,包括()。

地表水可能造成矿山水害的原因,包括()。

发表时间:2024-07-22 21:50:14 来源:网友投稿

地表水可能造成矿山水害的原因,包括()。

A 、巷道导通含水层

B 、矿井穿透老空区

C 、洪水泛滥

D 、地表沉陷

参考答案:

【正确答案:C】

矿井水害的环境地质影响

矿井开采时遇到的突水灾害是煤矿常见的地质灾害。我国北方石炭-二叠纪煤田中,不仅煤系内部有含水层,而且下伏巨厚的奥陶纪灰岩中也富含岩溶水。随着开采工程的延伸,地下水深降强排,导致地下水位发生变化,产生巨大的水头差,在一些构造破碎带和隔水层薄的地段发生突水。

由于地下水源的变化,有些矿井充水而不得不长期排水,使附近的地表水和表层地下水被疏干,恶化了生态环境,缺水地区不断扩大,开滦范各庄矿突水后,水位下降20~30m,使厂矿、工业和生活供水原有的系统失灵,发生吊泵现象,形成无法供水的局面;山西省因采煤而造成18个县缺水,26万人吃水困难,30多万亩水地变为旱田。

据不完全统计,30多年来。我国主要煤矿区因突水淹井58次,部分淹井64次,经济损失27亿元。1984年开滦范各庄煤矿的一次淹井事故损失就达5亿元。在河南焦作矿区,突水事故共发生270余次,最高突水量达243m3/min,突水淹井事故19起,每次直接损失数千万元,矿区排水量高达8.86m3/s,平均每采1t煤就需排6t水。另外在全国岩溶型煤田中,突水量大于10m3/min的突水共发生200余次,50m3/min的突水约20次以上;而河南省同类矿床中,10m3/min的突水约有60余次,大于50m3/min的突水约11次,分别占全国同类突水的30%和50%。目前我国北方主要的矿务局有130对矿井受水害威胁。随着向深部开采,水压不断增加,突水日趋严重。有些新井因水的威胁长期不能投产。在北方岩溶地区,煤矿约有15Nt的储量受水威胁而不能开采,如河南省新密矿区受水害威胁的煤炭储量就达1.29Nt,占煤田地质储量的54.9%;鹤壁矿区仅太原组下组受水害威胁的储量就占矿区总储量的25%。

目前不少矿井已进入深部开采,有些矿井下开采标高已达到地表以下600m,最深的已超过地表以下1 000m。煤层底板承受岩溶承压水的水压已达2.0~6.5MPa,而煤层与其下伏灰岩岩溶含水层之间的隔水层厚度一般只有10~20m,最大可达50~60m,突水的几率大增,淹井事故也逐年上升。对其进行研究和防治具有重要的战略意义。

2.3.1 矿井水害水源类型及分布

凡影响生产、威胁采掘工作面或矿井安全使矿井局部或全部被水淹没的现象都称之为水害,而矿井水害的典型表现就是突水事件。

导致矿井突水灾害的水源主要有大气降水、地表水、地下水和老空水。其中地下水按其储水空隙特征又可分为孔隙水、裂隙水和岩溶水等。大多数矿井水害是由2~3种水源造成的,单一水源的矿井水害很少,故矿井水害类型是按一种水源或某一种水源为主命名的。主要有以下5种突水灾害的水源类型。

2.3.1.1 地表水

水源是大气降水、地表水体(江、河、湖泊、水库、沟渠、坑塘、泥石流)。水源通过井口、采后冒落带、岩溶地面塌陷坑或洞、断层带及煤层顶底板或封闭不良的旧钻孔充水或导水进入矿坑。发生过此类水害的矿井有内蒙古平庄古山矿、辽源梅河一井等。

2.3.1.2 老空水

水源是古井、小窑、废巷及采空区积水。当采掘工作面接近或沟通时,老空水进入巷道或工作面。如山西陵川县关岭山煤矿、徐州旗山矿等矿区都发生过此类水源的突水事件。

2.3.1.3 孔隙水

水源是第四系松散含水层孔隙水、流沙水或泥沙等,有时受到地表水补给。通过采空冒裂带、地面塌陷坑、断层带或煤矿层顶底板含水层裂隙及封孔的旧钻孔进入矿坑。发生过此类水害的典型矿井有吉林舒兰煤矿、淮南孔集矿、徐州新河煤矿。

2.3.1.4 裂隙水

水源为砂岩、砾岩等裂隙含水层的水,常常受到地表水或其他含水层补给,通过冒裂带、断层带、采掘巷道揭露顶板或底板砂岩水、或者封孔不良的老钻孔水进入巷道或工作面。典型的矿区有徐州大黄山煤矿、韩桥煤矿、开滦范各庄矿等。

2.3.1.5 灰岩岩溶水

灰岩发育的矿区在一些奥陶、石炭、二叠系灰岩中发育有裂隙岩溶水,特别是厚层灰岩含水层,这些水进入矿坑或工作面时会导致矿井突水灾害,如淮南谢一矿是薄层灰岩裂隙带突水,淄博北大井均为断层入岩溶水淹井,开滦范各庄、安阳铜治矿为中奥陶灰岩水通过陷落柱进入矿井。

在突水形式方面,由于断层面引起的采掘工作面的突水占突水总数的80%以上,就是说开采的突水事故主要是由构造原因引起的,而且滞后型突水多于突发型突水,工作面回采突水多于巷道掘进突水。

从水害的分布来看岩溶水水源导致的突水灾害主要发生在华南晚二叠统岩溶地区,以基岩裂隙水源导致突水现象的分布最为广泛的在我国的华北、东北、西北和西南的广大地区这种现象较普遍。因此地以基岩裂隙水源导致突水灾害的情况居多。

2.3.2 突水预测

凡是井巷掘进或工作面回采过程中,接近或沟通含水层、被淹巷道、地表水体、含水断裂带、溶洞、陷落柱而突然产生的水害事故称矿井突水。这是因为井下采掘活动破坏岩层天然平衡、采掘工作面周围水体在静水压力和矿山压力作用下,通过断层、隔水层和矿层的薄弱处进入采掘工作面。矿井突水这一现象的发生与发展是有一个逐渐变化的过程,有的表现很快(一二天或更短)有的表现较慢(采掘后半个月或数日)。

2.3.2.1 易于突水构造部位或地段预测

据统计80%~90%以上的突水发生在断裂带附近,且煤层底板有强含水层存在,特别是在下列构造部位突水几率最大。

(1)断层交叉或汇合处、断层尖灭或消失端一带、两条大断层相互对扭地带、与导水或富水大断裂呈入字型连接的小断裂带。

(2)褶曲轴部裂隙密集带或小断裂密集带、背斜倾伏端一带、小褶曲与地层倾向转折带的复合部位或平缓小褶曲翼部。

(3)压性断裂下盘,张性断裂上盘因富水性强,井巷通过或接近时往往发生突水。

(4)新构造活动强烈的断裂带。

2.3.2.2 采掘前的突水预测

主要是编制矿区或采区底板突水和导水陷落柱预测图。

2.3.2.2.1 矿区或采区底板突水预测图

首先利用矿区已有的地质构造、突水点分布、突水量及其稳定程度,或单孔放水量、岩溶发育程度,观测孔水压、水质等资料进行综合整理分析后,编制岩溶水强径流带或富水程度不同块段的水文地质分区图,将易于突水的构造部位,进一步分为亚区,预测可能发生突水的大致范围与地段。其次在水文地质分区图上,对矿区或易突水地段编制矿区隔水层底板等高线图、矿层底板含水岩层等压线图、矿区隔水层水压等值线图(即从上述两图数值相减而得)、隔水层等厚线图。再次统计附近矿区条件相似矿区突水系数值,确定相似矿区的临界突水系数区间。最后利用隔水层水压等值线图与隔水层等厚线图编制矿区隔水层比水压等值线图;两图上数值相除即每米隔水层所承受水压等值线图,按临界突水系数值编制突水预测图,圈出相对安全区和突水危险区。

2.3.2.2.2 导水陷落柱预测

将矿区采上层煤见到的陷落柱放在图上编制陷落柱分布图,然后将煤系砂岩或薄层灰岩水或煤矿层底板厚层灰岩水的等压线,综合制成导水陷落柱预测图。图上可以圈出煤矿系砂岩水或薄层灰岩水的高水压地段,或在放水、突水时出现这类高水压与底板厚层灰岩水的低水压区重合或地段,即陷落柱所在地段,这些地段往往是导水的。

2.3.2.3 采掘过程中的突水预测

在前述预测的基础上,对有突水危险地段,或易于发生突水的构造部位及其附近地段,可采用下述方法进行预测。

2.3.2.3.1 钻探方法

探测高水压区,在安全的超前距内设探水孔,探测各薄层灰岩水的水压值与下伏厚层灰岩水的水压值进行比较。若其值等于或接近厚层灰岩水水压,则有发生突水危险,反之,则不会突水(两者差在0.4~1.0MPa);探测底板水的导升高度。所谓导升高度,即底板水在其水头压力及毛细管力的作用下,沿隔水层内的构造裂隙缓慢导升到某一高度。

2.3.2.3.2 放射性测量

主要是用Fd-307型RaA测氡仪测量氡射气含量确定底板的导升高度及隔水层含水性。原理是氡射气在岩石中运移,浓度降低大,而在岩石裂隙中,阻力小,浓度降低小,和氡射气的半衰期短,在运移过程中急剧衰变使其浓度大量降低。据此当底板有裂隙时出现异常,氡射气含量高。其值大小反映底板导升高度的距离,也反映隔水层裂隙发育程度及其富水性。无论钻孔探底板水导升高度或用快氡Ra 法,主要目的是掌握它的导升高度上界是否进入或达到矿压破坏区,以此预测是否会发生突水。

2.3.2.3.3 物探方法

当采掘工作面的迎头或巷道底板接近含水、导水和富水的破碎带时,其工作面周围的气温降低、湿度大,据此,可用有关仪器监测工作面的气温和湿度,用来预报突水。

2.3.2.4 巷道围岩强度和重力与静水压力的关系

2.3.2.4.1 静水压力对巷道顶底板的作用和突水的预防

开采前后承压含水层的静水压力(H突),始终与巷道顶底部隔水层的重力(单位面积上岩柱的重力hγ)和抗拉强度(Kp)是对抗着的。一旦开采巷道破坏了天然平衡之后,就会产生“矿压”现象或突水。巷道顶(底)板受力情况,类似两端固定承受均布荷重梁的受力情况(图2.12)。

图2.12 巷道底部隔水层承受静水压力示意图

В.Д.斯列萨列夫按梁和强度理论,得出计算底板和顶板含水层的静水压力公式为:

环境地质与工程

式中:H理安——巷道顶、底板计算的理论安全水压值,MPa;

Kp——顶、底部隔水层的抗拉强度,MPa,可由实验或部分巷道突水资料确定;

γ——顶部隔水层密度×106N/m3,由试验确定;

l——巷道宽度,m;

h——顶、底部隔水层厚度,m。

式(2-26)用于计算底板含水层的静水压力,式(2-27)用于计算顶板含水层的静水压力。式(2-26)和(2-27)可综合写成下式:

环境地质与工程

当H突≤H理安时,巷道穿越的地段是安全的。H突&gtH理安时,则巷道顶底板会被水压鼓破突水。为防止突水可以从隔水层安全厚度或安全水压两方面解决。

从公式(2-28)导出顶底板安全厚度的计算公式为:

环境地质与工程

故底板抗静水压力的理论最小安全厚度(h理底)为:

环境地质与工程

顶板抗静水压力的理论最小安全厚度(h理顶)为:

环境地质与工程

将计算的理论最小安全厚度(h理底和h理顶)与底顶隔水层实际厚度(h)比较。若计算的h理底或h理顶≤h时,一般是安全的;若h理底或h理顶&gth时,掘进巷道就有突水的可能。这时多用降低水压的办法,以达到安全生产的目的。其确定方法是将开采地段底或顶板隔水层实际厚度(h),分别代入公式(2-26)和(2-27)中,求出理论安全水压(H理安),把H理安与底或顶板实际水压H突进行比较:若H理安≤H突时,表明巷道底或顶部隔水层不能抵抗所承受的静水压力,不安全,可能突水;若H理安&gtH突时,则是安全的。当H理安≤H突时,为防止突水,必须使水压降低S后才能符合要求,即:

图2.13 巷道侧方承受静水压力示意图

环境地质与工程

2.3.2.4.2 巷道侧向静水压力的作用和突水预防

巷道掘进时可能在巷道的“正前”方或侧帮,接近或揭露含水层(或水体)使巷道受到“侧方”水的威胁(图2.13),В.Д.斯列萨列夫给出确定安全宽度“w”的公式:

环境地质与工程

式中:P理——含水层或水体给予侧帮的静水压力,MPa;

Kp——隔水层平均抗拉强度,MPa;

l——巷道的高度;

w——正前或侧帮间隔水层的宽度。

当P实≤P理时,从理论上讲是安全的。当P实&gtP理时,静水压力可能压坏隔水层而实水。为了防止突水发生,可用式(2-33)计算出保留的隔水层的安全宽度“w”,即:

环境地质与工程

以上是在理想情况下推出的,在使用中应按具体地质、岩石物理力学性质的不同,常采用2~3倍的安全系数。巷道突水点从理论上讲一般在巷道的边缘,受侧向压力突水时,突水点位置应偏于巷道的底部。

2.3.2.4.3 确定井巷突水的经验公式和确定底板隔水层抗拉强度的方法

上述的В.Д.斯列萨列夫公式,考虑了岩石强度、工作面宽度、隔水层的厚度、重力与静水压力间的平衡关系。这对巷道而言是较全面的,但用它计算跨度大的工作面,一般与实际相差较大,所以我国矿山部门,依据突水资料,总结出静水压力(P)与隔水层厚度(M)间的“综合”平衡关系式,称突水系数(或称水压比、阻水系数),即:

环境地质与工程

式中:K临——突水系数;

P——底板承受的静水压力;

M——隔水层厚度。

上式的物理意义即是单位厚度隔水层所能承受的极限水压值。我国许多矿区都已总结出适于本区的经验数值见表2.2。并作为判断采掘中底板可能突水的指标。但式(2-35)的缺点是仅考虑隔水层的厚度,而隔水层是由各种不同强度和不同抗水性能的岩石组成,对这个重要因素在公式中无反映。匈牙利等国在利用隔水层时注意了这个因素,他们以泥岩抗水压的能力为标准隔水层厚度(即以泥岩作为1;相当于1m厚完整泥岩能抗0.5个水压力),将其他不同岩性的岩石换算成泥岩厚度,称换算后岩层的厚度为等值(或等效)厚度,换算系数值列表于2.3中。这样换算后的M值,不仅有厚度,而且含有强度的概念。西安煤矿研究所以1966年试验资料(每米厚岩层强度:砂岩为10MPa,砂质页岩为7MPa,铝土页岩为5MPa,断层带岩石为3.5MPa)为基础,用砂岩作为标准部位单位,则砂质页岩的比值为0.7,铝土页岩为0.5,断层带岩石为0.35。用此系数换算为等效厚度的各种岩石。

表2.2 某些矿区突水系数

表2.3 岩石等效系数

按隔水层上述特点,可用部分巷道内突水或压水试验资料,确定底部隔水层平均抗张强度。因掘进出现来压、变形、底鼓、破裂、突水等过程,与材料力学中拉伸试验的过程类似。利用这种情况可得平均抗拉强度的经验公式:单位厚度隔水层承受静水压力(P/M)使岩石破坏,必须克服单位厚度隔水层的抗拉强度(Kp/M),和其重力(即容重γ);若达到极限平衡时则:

环境地质与工程

环境地质与工程

式中:Kp——底部隔水层平均抗拉强度,其他符号同前。

回采工作面时的底板突水系数,由西安煤矿研究所提出了下述的经验公式:

环境地质与工程

式中:TS——突水系数,Pa·m-1;

P——保护层(即隔水层)承受的水压力,Pa;

M——保护层的厚度,m;

Cp——矿山压力对底板的破坏厚度,m。

2.3.3 突水防治

为了防止突水灾害、提高工效和降低成本,采用各种工程措施,对涌入井巷或威胁井矿安全的各种水源进行排除或控制等科学管理工作,这些工作包括地表水和地下各种防水、治水,探放水和疏干排水等。合理的利用这些方法可以有效地防治突水。

矿床疏干是一项具有引发矛盾性质的工作。采矿时为防止矿井突水,总是希望最彻底或尽可能多地排除可能进入井巷和威胁采矿的各种水源,其结果可能破坏当地天然水资源的平衡,减少供水量和恶化环境。从保护环境出发,则渴望尽可能地提供更多的地下水资源和保护天然地质环境不恶化。因此合理地进行矿床疏干是兼顾采矿、供水和保护地质环境的统筹工作。

按照不同的标准,人们把矿床疏干工作做了各种划分,下面将有关疏干防治水的各种方法按其主要作用分为三类来介绍。

2.3.3.1 防水法

指通过排除地表水降低地下水防止水流入矿区的方法,其主要目的在于减少矿井的涌水量。

2.3.3.1.1 汇集与排除矿区范围内降水形成的地表径流

方法有:填堵井下进水通道、汇集矿区内原有分布的水体,并予以排除;修筑边缘排水沟等地表防、排水工程,以拦截外围流来的降水漫流、地表水和浅部潜水,并引出矿区之外。

2.3.3.1.2 矿区内地表水体的处理

可采用隔离水体,如修筑水体防渗层、敷设排水管道等;当不允许水体存在时,则采用移河措施,以达到防止地下水进入矿井的目的。

2.3.3.2 疏水法

指对充水水源进行疏干或降压,以确保安全采矿的方法。此法包括预先疏干、并行疏干和探放水。

2.3.3.2.1 预先疏干

多用于水文地质条件复杂的大水矿床。又可分为两种情况:

(1)当开挖井巷须临时通过强含水层或受高压水威胁的地段时,可以从地表打深孔预先疏干局部含水层或降低高压水头至安全值以下,当井巷挖通,并封闭该含水层后,停止疏干,允许原含水层恢复充水。

(2)当开采矿床的直接顶底板含水或直接顶底板虽有一定厚度的隔水层,但在间接充水层水压过高,有突水危险时,可采用从地表进行预先疏干或降压的方法,达到安全条件下采矿的目的,且不允许被疏干的地下水位或降低的水压恢复。随开采范围扩大,仍可用原地表疏干方式,不断外扩疏干范围,或停止原地表预先疏干,改在井巷内布置各种疏干措施,继续进行预先疏干。

2.3.3.2.2 并行疏干

是利用采矿工程或专门疏干工程,在采矿同时进行疏干工作,其完成疏干的时间应提前于采矿工作。可分为:

(1)是在预先疏干任务完成后,停止原地表预先疏干(需要时,亦可不停止),代之以在井巷或露天矿场内设置的各种排水设施,与采矿同时进行疏干,这些设施有垂直的降水孔(井)、吸水孔井及各种过滤器,以及水平的排水孔、疏水沟、疏水平巷等。

(2)是在水文地质条件简单的矿区,从采矿开始到终止只进行并行疏干,疏干时,应对预测的强水源或有突水危险地段,进行超前探水与放水,以保安全。

2.3.3.3 防渗法

指堵截涌水水源于矿区或井巷之外的方法,用以保证安全采矿,同时达到保护供水水源和保护地质环境的目的,留设安全矿柱和建设防水闸(墙)等措施也属此类。防渗法主要用于恢复已淹井巷及涌水量过大或有突水威胁,又有适合条件的大矿区。对这类矿区如采用疏水法,则多会发生破坏地下水资源、引起地面塌陷和增大排水费用等问题。

防渗法的实质是使用注浆工程,在地下筑成不透水体,切断井巷进水通道,用以隔绝涌水水源或大量减少矿井涌水量。此类工程虽投资多、工程量大和周期长,但只要水文地质条件适合,则会收到阻水显著、长期经济收益好的效果。国内外均有成功实例可予借鉴。

矿区内的透水天窗、通过井巷的断裂带、已淹井巷的突水口和特大涌水点等处,都可用局部堵水来隔绝水源,减少涌水量或使淹井恢复生产。对某些大矿区,如能确切地掌握充水水源的隔水和进水边界,在经济合理和技术可能的情况下,可在较大来水断面上,采用地面打钻注浆,建筑防渗帷幕,形成人工不透水墙,改变原进水边界,达到截流的目的。防渗措施还可用于加强隔水顶底板的隔水能力和增强断裂带或安全矿柱的抗水、抗压性能;在深排水矿区,还可用以保护供水源地和环境。

从1802年法国将石灰和粘土用水混合造成浆液压入地基以来,注浆技术得到迅速发展。20世纪,从悬浮液注浆发展到化学注浆。英国在20世纪60年代后期建设的某矿,80%以上采用了注浆技术;原苏联用特殊凿井法建设的井筒,有50%以上应用了注浆法。我国于20世纪70年代开始在水口山铅锌矿区首先使用了大型帷幕注浆截流工程,随后在一些别的矿区采用了这一方法皆取得防渗的良好效果,如:淄博北大井堵水:

1、965年5月13日,北大井-81m水平发生特大突水。水量由突水前的11m3/min骤增至443m3/min,矿井瞬时被淹没。其原因系张性断层贯通煤层下部高压的裂隙岩溶水所致。淄博矿务局在1972年至1974年对该突水点进行了注浆堵水。从地面共打了20个钻孔,向断层破碎带与徐家庄灰岩和奥陶系灰岩的接触面部位,以及断层两盘的灰岩内注浆。共注进水泥9 104.25t,水玻璃115.77m3,沙子477.63m3,石子15.10m3,堵住了该突水口。1975年排水至井底,实测涌水量为12.37m3/min,较突水前的正常涌水量仅多1.37m3/min,堵水效果达99.69%以上。

非煤矿山的有害因素

起重伤害

起重伤害是指各种起重作业(包括起重机安装、检修、试验)中发生的挤压、坠落、(吊具、吊重)物体打击事故和触电。在非煤矿山生产过程中,选矿车间和机修车间存在大量的起重设备,发生起重伤害的几率比较大。其危害因素主要表现为牵引链断裂或滑动件滑脱、碰撞、突然停车等。由此引发的事故有毁坏设备、人员伤亡、影响生产等。起重伤害的一般原因有以下几个方面:超载;牵引链或产品未达到规定质量要求;无证操作起重设备或作业人员违章操作;开关失灵,不能及时切断电源,致使运行失控;操作人员注意力不集中或视觉障碍,不能及时停车;被运物件体积过大;突然停电;起重设备故障等。在生产过程中,还存在压力容器爆炸、高温、腐蚀、雷击、地震、采光照明不良等危险、有害因素。

辐射

辐射危害:一般非煤矿山开采,即使不是生产铀等放射性矿石的矿山,都含有微量的放射性物质,如氡。氡的产生是226镭原子衰变的结果,这种衰变是自然发生的,人们无法控制这种衰变,因而氡的产生是连续的,氡从岩石里跑到空气中的过程也是连续的。氡进入人体的主要途径是呼吸道。吸人的氡经上呼吸道进入肺部,并通过渗透作用至肺泡壁溶于血液循环系统分布到全身,并积聚在含脂肪较多的器官或组织中,按其本身固有的规律进行衰变,损害肺部和上呼吸道,加速某些慢性疾病的发展,严重危害职工身体健康。

火灾

火灾具有突发性的特点,虽然存在有事故征兆,但由于监测、预测手段不完善,以及人们对火灾发生规律掌握不够等原因,火灾往往在人们意想不到的时候发生。火灾事故后果往往比较严重,容易造成重大伤亡,尤其是特大火灾事故。因此必须加强对火灾事故的预防。发生火灾事故的原因比较复杂,因为构成燃烧条件的三要素(着火源、可燃物、助燃物)普遍存在于人们的生产、生活中。例如着火源有明火、化学反应热、物质的分解自燃、热辐射、高温表面、撞击或摩擦、电气火花、静电放电、雷电等多种;可燃物有各种可燃气体、可燃固体、可燃液体。非煤矿山火灾事故的一般原因有以下几个方面:

(1)生活和生产用火不慎。通过对大量火灾事故的调查和分析表明,有不少事故是由于操作者缺少有关的科学知识,在火灾险情面前思想麻痹,存在侥幸心理,不负责任,违章操作。

(2)设备不良。如设计错误且不符合防火或防爆的要求,电气设备设计、安装、使用维护不当等。

(3)物料的原因。例如可燃物质的自燃,各种危险物品的相互作用,机械摩擦及撞击生热,在运输装卸时受剧烈振动等。

(4)环境的原因。如潮湿、高温、通风不良、雷击、静电、地震等自然因素。

(5)管理的原因。

(6)建筑结构布局不合理,建筑材料选用不当等因素。

粉尘和噪声

非煤矿山在生产过程中(如凿岩、爆破、铲装、放矿、运输和破碎等)会产生大量的粉尘,尾矿库也存在一定的粉尘。粉尘危害性大小与粉尘的分散度、游离二氧化硅含量、粉尘物质组成及粉尘浓度有关,一般随着游离二氧化硅含量和有害物质的增加而增大。不同粒径的粉尘中,呼吸性粉尘对人的危害最大。人员长期吸人粉尘后,使肺组织发生病理学改变,因此丧失正常的通气和换气功能,严重损害身体健康。

噪声就是使人感到不愉快的声音,不仅对人体的听力、心理、生理产生影响,还可引起职业性耳聋,而且对生产活动也产生不利影响。在高噪声环境中作业,人的心情易烦躁,容易疲劳,反应迟钝,工作效率低,可诱发事故。噪声产生于物体的振动,振动是生产中常见的危险因素,它与噪声相结合作用于人体。振动可直接作用于人体,也可通过地板或其他物体作用于人体,按其作用部位可分为局部振动和全身振动。产生振动多见于使用风动工具、电动工具及其他有较强机械摩擦作用的地方。

在非煤矿山生产过程中,噪声与振动主要来源于气动凿岩工具的空气动力噪声,各设备在运转中的振动、摩擦、碰撞而产生的机械噪声和电动机等电气设备所产生的电磁辐射噪声。产生噪声和振动的设备和场所主要有:空压机和空压机泵房;通风机和通风机房;水泵和水泵房;绞车和绞车房;爆破作业场所;破碎设备和破碎作业场所;凿岩设备和凿岩工作面;运输设备和设备通过的巷道;装岩机和装岩作业场所;机修设备(如锻钎机)及机修车间等。

水灾

(1)造成水害的原因。在非煤矿山开采过程中,可能存在由地表塌陷或地质构造形成的裂隙、通道进入矿井的地表水危害,采空区和废弃巷道中储存的“人工水体”的危害,以及原岩溶洞、裂隙等构造中的原岩水体的危害。产生水害的主要原因可能是:采掘过程中没有探水或探水工艺不合理;采掘过程中突然遇到含水的地质构造;爆破时揭露水体;钻孔时揭露水体;地压活动揭露水体;排水设施、设备设计不合理;排水设施、设备施工不合理;采掘过程中违章作业;没有及时发现突水征兆;发现突水征兆没有及时采取探水措施或没有及时探水;发现突水征兆后没有及时采取防水措施;发现突水征兆采取了不合适的探水、防水措施;采掘过程中没有采取合理的疏水、导水措施,使采空区、废弃巷道积水;巷道、工作面和地面水体内外连通;降雨量突然加大时,造成井下涌水量突然增大。

(2)危害及破坏形式。矿井、地表水或突然降雨都可能造成矿井水灾事故,这些事故包括:

①采掘工作面突水;

②采掘工作面或采空区透水。由于各种通道使采空区与储水体连通,使大量的水体直接进入采空区,从而形成采空区、巷道甚至矿井被淹;

③地表水或突然大量降雨进入井下。通过裂隙、溶洞、废弃巷道、透水层、地表露头与采空区、巷道、采掘工作面连通,使大量的水体直接进入采空区再进人人员作业场所,或直接进入作业场所。

机械伤害

机械性伤害主要指机械设备运动(静止)部件、工具、加工件直接与人体接触引起的夹击、碰撞、剪切、卷入、绞、碾、割、刺等形式的伤害。各类转动机械的外露传动部分(如齿轮、轴、履带等)和往复运动部分都有可能对人体造成机械伤害。

同时机械伤害也是非煤矿山生产过程中最常见的伤害之一,易造成机械伤害的机械、设备包括:运输机械,掘进机械,装载机械,钻探机械,破碎设备,通风、排水设备,选矿设备,其他转动及传动设备。

坠落和提升运输

坠落危害是指在高处作业中发生坠落造成的伤亡事故。非煤矿山生产中可能产生坠落伤害事故的主要场所或区域有:竖井、斜井、天井、溜井、采场及各类操作平台。

提升运输是非煤矿山生产过程中一个重要组成部分。非煤矿山主要有竖井提升、斜井提升和水平运输(机车运输、带式输送机运输)。提升运输事故主要表现为:

(1)竖井提升:断绳、过卷、蹲罐毁物伤人;突然卡罐或急剧停机,挤罐或信号工、卷扬工操作失误造成人员坠落。

(2)斜井提升:跑车、掉道毁物伤人;斜井落石伤人。其中跑车事故是斜井提升运输危害最大的事故,其产生的主要原因有如下2种:

①矿车运行状态不良。

a.钢丝绳断裂。钢丝绳承载时强度不够或负荷超限时都可能产生钢丝绳断裂。

b.摘挂钩失误。未挂钩下放或过早摘钩,都会造成跑车事故。

c.制动装置失灵。制动装置主要包括工作闸或制动闸,如果失效就会造成制动装置失灵。

d.绞车工操作失误。司机精神不集中,未带电“放飞车”。

e.挂车违章。超挂车辆、车辆超装或车辆脱离连接。

②防跑车装置。

a.设计原因。主要指设计的防跑车装置不符合实际,不能起到防跑车作用。

b.安装缺陷。不安装或安装不当,起不到应有的作用。

c.工作状态不良。工作状态异常或出现故障,起不到防跑车的作用。

(3)水平运输。

①机车运输:常见的事故有机车撞车,机车撞、压行人,机车掉道等。其中机车撞压行人是危害最大的事故。产生机车运行撞压伤人事故的主要原因有:

a.行人方面。行人行走地点不当,如行人在轨道间、轨道上、巷道窄侧行走,就可能被机车撞伤;行人安全意识差或精神不集中,行人不及时躲避、与机车抢道或扒跳车,都可能会造成事故;周围环境的影响,如无人行道、无躲避硐室、设备材料堆积、巷道受压变形、照度不够、噪声大等。

b.机车运行方面。操作原因如超速运行、违章操作、判断失误、操作失控等;制动装置失效等。

c.其他因素。如无信号或信号不起作用、操作员无证驾驶或精神不集中、行车视线不良等。

②胶带运输:主要表现为绞人伤害,胶带运输机产生绞人伤害的主要原因有:

a.人的因素:胶带机运转过程中清理物料、加油或处理故障;疲劳失误、绊滑跌倒、衣袖未扎;违章跨越、违章乘坐;操作人员精神不集中。

b.物的因素:防护装置失效;设计不满足要求;信号装置失效或未开启等。

电气设备或设施

非煤矿山生产系统大量使用电气设备,存在电气事故危害。充油型互感器、电力电容器长时间过负荷运行,会产生大量热量,导致内部绝缘损坏,如果保护监测装置失效,将会造成火灾、爆炸;另外配电线路、开关、熔断器、插销座、电热设备、照明器具、电动机等均有可能引起电伤害。

(1)电气火灾产生原因。

①由于电气线路或设备设计不合理、安装存在缺陷或运行时短路、过载、接触不良、铁心短路、散热不良、漏电等导致过热。

②电热器具和照明灯具形成引燃源。

③电火花和电弧,包括电气设备正常工作或操作过程中产生的电火花、电气设备或电气线路故障时产生的事故电火花、雷电放电产生的电弧、静电火花等。

(2)电击危害。

①分布。配电室、配电线路以及在生产过程中使用的各种电气拖动设备、移动电气设备、手持电动工具、照明线路及照明器具或与带电体连通的金属导体等,都存在直接接触电击或间接接触电击的可能。

②伤害方式和途径。

a.伤害方式。触电伤害是由电流的能量造成的。当电流流过人体时,人体受到局部电能作用,使人体内细胞的正常工作遭到不同程度破坏,产生生物学效应、热效应、化学效应和机械效应,会引起压迫感、打击感、痉挛、疼痛、呼吸困难、血压异常、昏迷、心律不齐等,严重时会引起窒息、心室颤动而导致死亡。

b.伤害途径。人体触及带电体;人体触及正常状态下不带电而当设备或线路故障(如漏电)时意外带电的金属导体(如设备外壳);人体进入地面带电区域时,两脚之间承受到跨步电压。

③产生电击的原因。

a.电气线路或电气设备在设计、安装上存在缺陷,或在运行中缺乏必要的检修维护,使设备或线路存在漏电、过热、短路、接头松脱、断线碰壳、绝缘老化、绝缘击穿、绝缘损坏、PE线断线等隐患;

b.没有设置必要的安全技术措施(如保护接零、漏电保护、安全电压、等电位连接等),或安全措施失效;

c.电气设备运行管理不当,安全管理制度不完善;

d.电工或机电设备操作人员的操作失误,或违章作业等。

(3)可能造成触电的场所。

①分布。配电室、配电线路等。

②伤害方式和途径。

a.伤害方式。由电流的热效应、化学效应、机械效应对人体造成局部伤害,形成电弧烧伤、电流灼伤、电烙印、电气机械性伤害、电光眼等。

b.伤害途径。

直接烧伤:当带电体与人体之间产生电弧时,电流流过人体形成烧伤。直接电弧烧伤是与电击同时发生的。

间接烧伤:当电弧发生在人体附近时,对人体产生烧伤,包括融化了的炽热金属溅出造成的烫伤。

电流灼伤:人体与带电体接触,电流通过人体由电能转换为热能造成的伤害。

③产生触电的原因:带负荷(特别是感应负荷)拉开裸露的闸刀开关;误操作引起短路;近距离靠近高压带电体作业;线路短路、开启式熔断器熔断时,炽热的金属微粒飞溅;人体过于接近带电体等。

地压

地压灾害是非煤矿山开采过程中的一大安全隐患,如果预防不当,管理措施不到位,将会造成事故。采空区、采场和巷道受岩石压力的影响,都可能引发地压灾害。

(1)引起地压灾害的原因:采矿方法不合理;穿越地压活动区域;穿越地质构造区域;矿柱被破坏;采场矿柱设计不合理或未保护完好;在应该进行支护的井巷没有支护或支护设计不合理;遇到新的地质构造而没有及时采取措施;采场或巷道施工工艺不合理;采场或巷道施工时违章作业;遇到新的岩石而没有按岩性进行施工;爆破参数设计不合理;爆破工序不合理;爆破施工时违章作业;地下水作用、岩石风化等其他地压活动的影响或破坏。

(2)地压灾害危害。地压灾害通常表现为采场顶板大范围垮落、陷落和冒落,采空区大范围垮落或陷落,巷道或采掘工作面的片帮、冒顶或底板鼓胀等,竖井井壁破裂、井筒涌砂、岩帮片落,地表沉陷等。

①采场顶板大范围垮落、陷落和冒顶,其主要危害有:破坏采场和周围的巷道;造成采场内人员的伤亡;破坏采场内的设备和设施;破坏矿井的正常通风;造成生产秩序的紊乱;其他危害。如排水管道经过采场,可能造成排水系统破坏,引起水害,继而破坏矿井的供电系统等。

②巷道或采掘工作面的片帮、冒顶危害。岩体的地压活动造成巷道的片帮和冒顶,其危害主要有:巷道内人员的伤亡;破坏巷道内的设备、设施;破坏正常的生产系统;破坏巷道等。

中毒、窒息

(1)中毒、窒息原因分析。根据非煤矿山生产工艺的特点,引起中毒窒息的原因主要为爆破后产生的炮烟和其他有毒烟尘。其他有毒烟尘,如:矿体氧化形成的硫化物与空气的混合物,开采过程中遇到的溶洞、采空区,巷道中存在的有毒气体,火灾后产生的有毒烟气等。

爆破后形成的炮烟是造成人员中毒的主要原因之一。造成炮烟中毒的主要原因是通风不畅和违章作业。发生人员中毒、窒息的原因包括:

①违章作业。如放炮后通风时间不足就进入工作面作业,人员没有按要求撤离到不会发生炮烟中毒的巷道等;

②通风设计不合理,使炮烟长时间在作业区域滞留,独头巷道掘进时没有设置局部通风,没有足够的风量稀释炮烟,设计的通风时间过短等;

③由于警戒标志不合理或没有标志,人员意外进入通风不畅、长期不通风的盲巷、采空区、硐室等;

④突然遇到含有大量窒息性气体、有毒气体、粉尘的地质构造,大量窒息性气体、有毒气体、粉尘突然涌出到采掘工作面或其他人员作业场所,人员没有防护措施;

⑤出现意外情况。如意外的风流短路,人员意外进入炮烟污染区并长时间停留,意外的停风等。

(2)中毒、窒息场所。可能发生中毒、窒息的主要场所包括:爆破作业面,炮烟流经的巷道,炮烟积聚的采空区,炮烟进入的硐室,盲巷、盲井,通风不良的巷道,采空区,使用有毒或腐蚀性药剂的选矿车间等。

爆破作业

爆破作业是非煤矿山生产过程中的重要工序,其作用是利用炸药在爆破瞬间放出的能量对周围介质作功,以破碎矿岩,达到掘进和采矿的目的。

在非煤矿山开采过程中须使用大量的炸药。炸药从地面炸药库向井下运输的途中,装药和起爆的过程中、未爆炸或未爆炸完全的炸药在装卸矿岩的过程中,都有发生爆炸的可能。爆炸产生的震动、冲击波和飞石对人员、设备设施、构筑物等有较大的损害。常见的爆破危害有爆破震动、爆破冲击波、爆破飞石、瞎炮、早爆、迟爆等。

(1)爆破作业中的几种意外事故。

①拒爆(瞎炮)。

②早爆。

③自爆。

④迟爆。

(2)爆破产生的有害效应。

①爆破地震效应。炸药在岩土体中爆炸后,在距爆源的一定范围内,岩土体中产生弹性震动波,即爆破地震;硐室爆破时,因一次装药量较大,爆破地震也比较强烈,对附近的构筑物、设备设施和岩体等会产生较大影响,很可能引起大范围的冒顶片帮事故。

②爆破飞石。飞石是爆破时从岩体表面射出且飞越很远的个别碎块。爆破时由于药包最小抵抗线掌握不准,装药过多,造成爆破飞石超过安全允许范围,或因对安全距离估计不足,造成人身伤亡和设备损失,是爆破产生的有害效应之一。

③爆破冲击波。爆破时部分爆炸气体产物随崩落的岩土冲出,在空气中形成冲击波,可能危害附近的构筑物、设备设施和岩体等。

④爆破有毒气体。爆破时会产生大量的有毒有害气体,如果没有及时稀释和排出,过早进入工作面将会对作业人员的身体造成极大伤害,甚至导致人员中毒死亡。

(3)导致爆破事故的主要原因。爆破事故产生的原因主要有:放炮后过早进入工作面;盲炮处理不当或打残眼;炸药运输过程中强烈振动或摩擦;装药工艺不合理或违章作业;起爆工艺不合理或违章作业;警戒不到位,信号不完善,安全距离不够;爆破器材质量不良,点火迟缓,拖延点炮时间;非爆破专业人员作业,爆破作业人员违章;使用爆破性能不明的材料;炸药库管理不严等。

(4)易发生爆破事故的场所。在非煤矿山开采过程中,可能发生爆破事故的作业场所主要有:炸药库,运送炸药的巷道,运送矿岩的巷道,爆破作业的工作面,爆破作业的采场,爆破后的工作面,爆破后的采场,爆破器材加工地等。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!