当前位置:新励学网 > 应试教育 > 高中数学题(椭圆)

高中数学题(椭圆)

发表时间:2024-07-08 00:31:01 来源:网友投稿

解:(一)先求出椭圆G的方程。由题设可设a=2t,c=√3t,b=t,(t>0).又由题设可知,a=6,∴t=3,b=3,c=3√3.∴椭圆方程为(x²/36)+(y²/9)=1.∴该椭圆上任意一点P(6cosm,3sinm).另外圆Ck:(x+k)²+(y-2)²=k²+25.∴圆心A(-k,2),半径R=√(k²+25).(二)由题设可知,若圆Ck存在,则恒有|PA|≤R.===>(6cosm+k)²+(3sinm-2)²≤k²+25.===>5+4kcosm≤9sin²m+4sinm.该不等式中,k应满足,对任意m,恒成立。当sinm=0时,cosm=±1.显然此时的k不存在,∴不存在圆Ck,包围椭圆G.

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!