当前位置:新励学网 > 应试教育 > 高中数学解析几何

高中数学解析几何

发表时间:2024-07-10 04:18:50 来源:网友投稿

令过T(-1,0)的直线为y=k(x+1)

联立y=k(x+1)

y^2=4x

得k^2x^2+(2k^2-4)x+k^2=0,Δ=16-16k^2

令A(Xa,Ya),B(Xb,Yb)

Xa+Xb=(4-2k^2)/k^2

XaXb=1

Ya=k(Xa+1)

Yb=k(Xb+1)

得AB中点C((4-2k^2)/(2k^2),2/k)

过中点C,且与直线y=k(x+1)垂直的直线方程为

y-2/k=-1/k(x-(4-2k^2)/(2k^2))

解得E((2k^2+4)/2k^2,0)

AE长为(4+4/k^2)^(1/2)

AB长为(1+k^2)^1/2*(16-13k^2)^1/2*1/k^2

AE^2=3/4AB^2

解得k=±根号3/2

得X1=19/3

简单来说思路是等边三角形边AB与过AB边中点C的线段CE垂直。

大致思路是这样的,算错是难免的。如果有什么问题,还是麻烦你自己算算,不好意思了。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!