当前位置:新励学网 > 应试教育 > 初中数学关于比例的应用题10道

初中数学关于比例的应用题10道

发表时间:2024-07-11 07:39:45 来源:网友投稿

初中数学关于比例的应用题10道1、一个车间有A和B两个小组,他们的人数比例是7比3.然后从组派30个人去B组,他们的比例是3比2了。问B组实际有多少人?2、甲乙两个长方形,他们周长相等,甲长方形的长与宽之比是3:2,乙长方形长与宽之比是7:5,求甲乙两个长方形的面积之比.3、在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离()千米。也就是图上距离是实际距离的,实际距离是图上距离的()倍4、一根木料据成4段要用24分钟,照这样计算,如果要将这根木料据成7段,要用多少分钟?5、某种规格的钢钉6个重40克.现在这样的钢钉7500个,共重多少千克?6、甲乙每月收入比5:4,支出比4:3,他们两人都节余240元,每人每月收入是多少?7、一玩具5元,如果小莉买了,小莉与小英钱数比1:3,如果小英买了,小莉与小英钱数比1:1两人原来各有多少钱?8、甲、乙、丙三人的彩球数的比为9:4:2,甲给了丙三十个彩球,乙给了丙一些彩球‘比变为2:1:1.乙给了丙多少个彩球?9、甲乙两仓库共存放粮食70吨,从甲仓库调1/3到乙仓库,这时甲乙两仓库存粮的重量比是2:5,原来甲乙两仓库各存放粮食多少吨?10、.商店以每支10元的价格购进一批钢笔,加上40%的利润后出售,当卖出这批钢笔的3/4时就已经获利240元,则这批钢笔共多少支?

初中数学比和比例应用题一件工程甲乙两队合作6小时完成,甲乙两队的效率比是3:2。甲乙单独做各需要几天?设甲的效率为3x,乙的效率为2x,可列方程为6/3x+6/2x=1,解方程得x=5,所以3x=15,2x=10注:你把原题中的单位搞错了,以后看清楚,6小时应改为6天。

初中数学关于平移的应用题初中数学总复习提纲第一章实数重点实数的有关概念及性质,实数的运算内容提要一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何型别的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。二、实数的运算1.运演算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高阶运算到低阶运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab│x│等。4.系数与指数区别与联络:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。含有关于字母开方运算的代数式叫做无理式。注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。7.算术平方根⑴正数a的正的平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联络:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。把分母中的根号划去叫做分母有理化。9.指数⑴(—幂,乘方运算)①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)⑵零指数:=1(a≠0)负整指数:=1/(a≠0,p是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质:=(m≠0)⑵符号法则:⑶繁分式:①定义;②化简方法(两种)3.整式运演算法则(去括号、添括号法则)4.幂的运算性质:①·=;②÷=;③=;④=;⑤技巧:5.乘法法则:⑴单×单;⑵单×多;⑶多×多。6.乘法公式:(正、逆用)(a+b)(a-b)=(a±b)=7.除法法则:⑴单÷单;⑵多÷单。8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。9.算术根的性质:=;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用)10.根式运演算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.;B.;C..11.科学记数法:(1≤a<10,n是整数=三、应用举例(略)四、数式综合运算(略)第三章统计初步重点内容提要一、重要概念1.总体:考察物件的全体。2.个体:总体中每一个考察物件。3.样本:从总体中抽出的一部分个体。4.样本容量:样本中个体的数目。5.众数:一组资料中,出现次数最多的资料。6.中位数:将一组资料按大小依次排列,处在最中间位置的一个数(或最中间位置的两个资料的平均数)二、计算方法1.样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划资料的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。2.样本方差:⑴;⑵若,,…,,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划资料的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。3.样本标准差:三、应用举例(略)第四章直线形重点相交线与平行线、三角形、四边形的有关概念、判定、性质。内容提要一、直线、相交线、平行线1.线段、射线、直线三者的区别与联络从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联络)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,3.三角形的主要线段讨论:①定义②××线的交点—三角形的×心③性质①高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特殊三角形全等的判定:①一般方法②专用方法6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。7.重要辅助线⑴中点配中点构成中位线;⑵加倍中线;⑶新增辅助平行线8.证明方法⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、四边形分类表:1.一般性质(角)⑴内角和:360°⑵顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱形。推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。⑶外角和:360°2.特殊四边形⑴研究它们的一般方法:⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定⑶判定步骤:四边形→平行四边形→矩形→正方形┗→菱形——↑⑷对角线的纽带作用:3.对称图形⑴轴对称(定义及性质);⑵中心对称(定义及性质)4.有关定理:①平行线等分线段定理及其推论1、2②三角形、梯形的中位线定理③平行线间的距离处处相等。(如,找下图中面积相等的三角形)5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6.作图:任意等分线段。四、应用举例(略)第五章方程(组)重点一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)内容提要一、基本概念1.方程、方程的解(根)、方程组的解、解方程(组)2.分类:二、解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc(c≠0)三、解法1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法四、一元二次方程1.定义及一般形式:2.解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤—推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3.根的判别式:4.根与系数顶的关系:逆定理:若,则以为根的一元二次方程是:。5.常用等式:五、可化为一元二次方程的方程1.分式方程⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法(如,)⑷验根及方法2.无理方程⑴定义⑵基本思想:⑶基本解法:①乘方法(注意技巧!)②换元法(例,)⑷验根及方法3.简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。六、列方程(组)解应用题一概述列方程(组)解应用题是中学数学联络实际的一个重要方面。其具体步骤是:⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说未知数越多,方程越易列,但越难解。⑶用含未知数的代数式表示相关的量。⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地未知数个数与方程个数是相同的。⑸解方程及检验。⑹答案。综上所述列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起著承前启后的作用。因此列方程是解应用题的关键。二常用的相等关系1.行程问题(匀速运动)基本关系:s=vt⑴相遇问题(同时出发):+=;⑵追及问题(同时出发):若甲出发t小时后,乙才出发,而后在B处追上甲,则⑶水中航行:;2.配料问题:溶质=溶液×浓度溶液=溶质+溶剂3.增长率问题:4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。三注意语言与解析式的互化如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。四注意从语言叙述中写出相等关系。如,x比y大3,则x-y=3或x=y+3或x-3=y。又如x与y的差为3,则x-y=3。五注意单位换算如,“小时”“分钟”的换算;s、v、t单位的一致等。七、应用举例(略)第六章一元一次不等式(组)重点一元一次不等式的性质、解法内容提要1.定义:a>b、a<b、a≥b、a≤b、a≠b。2.一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。3.一元一次不等式组:4.不等式的性质:⑴a>b←→a+c>b+c⑵a>b←→ac>bc(c>0)⑶a>b←→acc→a>c⑸a>b,c>d→a+c>b+d.5.一元一次不等式的解、解一元一次不等式6.一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)7.应用举例(略)第七章相似形重点相似三角形的判定和性质内容提要一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。第二套:注意:①定理中“对应”二字的含义;②平行→相似(比例线段)→平行。二、相似三角形性质1.对应线段…;2.对应周长…;3.对应面积…。三、相关作图①作第四比例项;②作比例中项。四、证(解)题规律、辅助线1.“等积”变“比例”,“比例”找“相似”。2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来。⑴⑵⑶3.新增辅助平行线是获得成比例线段和相似三角形的重要途径。4.对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。五、应用举例(略)第八章函式及其图象重点正、反比例函式,一次、二次函式的图象和性质。内容提要一、平面直角座标系1.各象限内点的座标的特点2.座标轴上点的座标的特点3.关于座标轴、原点对称的点的座标的特点4.座标平面内点与有序实数对的对应关系二、函式1.表示方法:⑴解析法;⑵列表法;⑶图象法。2.确定自变数取值范围的原则:⑴使代数式有意义;⑵使实际问题有意义。3.画函式图象:⑴列表;⑵描点;⑶连线。三、几种特殊函式(定义→图象→性质)1.正比例函式⑴定义:y=kx(k≠0)或y/x=k。⑵图象:直线(过原点)⑶性质:①k>0,…②kk,0)—与x轴的交点。⑶性质:①k>0,…②k0时,开口向上;a0时,在对称轴左侧…,右侧…;a0时,图象位于…,y随x…;②k<0时,图象位于…,y随x…;③两支曲线无限接近于座标轴但永远不能到达座标轴。四、重要解题方法1.用待定系数法求解析式(列方程[组]求解)。对求二次函式的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的座标。如下图:2.利用图象一次(正比例)函式、反比例函式、二次函式中的k、b;a、b、c的符号。六、应用举例(略)第九章解直角三角形重点解直角三角形内容提要一、三角函式1.定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.2.特殊角的三角函式值:0°30°45°60°90°sinαcosαtgα/ctgα/3.互余两角的三角函式关系:sin(90°-α)=cosα;…4.三角函式值随角度变化的关系5.查三角函式表二、解直角三角形1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。2.依据:①边的关系:②角的关系:A+B=90°③边角关系:三角函式的定义。注意:尽量避免使用中间资料和除法。三、对实际问题的处理1.俯、仰角:2.方位角、象限角:3.坡度:4.在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。四、应用举例(略)第十章圆重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。内容提要一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论5.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:2.切线的性质(重点)3.切线的判定定理(重点)。圆的切线的判定有⑴…⑵…4.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:内角的一半:(右图)(解Rt△OAM可求出相关元素,、等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦

关于比例的应用题二、解答应用题。1.在一幅地图上,5厘米的长度表示地面上150千米的距离,求这幅地图的比例尺。2.在比例尺是1∶6000000的地图上,量得甲地到乙地的距离是25厘米,求两地间的实际距离。18厘米。若一架飞机以每小时750千米的速度从北京飞往南京,大约需要多少小时?4.混凝土的配料是水泥∶黄沙∶石子=1∶2∶3。现在要浇制混凝土楼板40块,每块重0.3吨,需要水泥、黄沙、石子各多少吨做原料?5.一批零件,每天做56个,28天完成,如果提前12天完成,每天应做多少个?6.某工人要做504个零件,他5天做了120个,照这样的速度,余下的还要做多少天?7.一间大厅,用边长4分米的方砖铺地,需用324块;若改铺边长3分米的方砖,需要多用几块?8.一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?9.一件工程,如果34人工作需20天完成,若要提前3天完工,现在需要增加几名工人?10.一本文艺书,每天读6页,20天可以读完,要提前8天看完,每天要比原来多看几页?11.羊毛衫厂共有工人538人,分三个车间,第一车间比第三车间少12人,已知第二车间与第三车间的人数比是3∶4。三个车间各有多少人?照这样计算,还要多少小时才能耕完这块地?13.学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。已知六年级分得56本,学校共购进图书多少本?14.小明居住的院内有4家,上月付水费9.8元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?15.某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?答案仅供参考:一、1.×2.×3.×4.√2.解设两地间的实际距离是x厘米150000000厘米=1500千米3.解设北京到南京的直线距离是x厘米90000000÷100000÷750=1.2(小时)4.总份数:1+2+3=65.解设每天应做x个x×(28-12)=56×28x=986.解设还要做x天120∶5=(504-120)∶x,x=167.解设需用x块32×x=42×324x=576576-324=252(块)8.解设大齿轮每分钟转x转10π×300=30π×xx=1009.解设提前3天完工,需要x人34:x=(203):20x=4040-34=6(人)10.解设提前8天看完,每天看x页6:x=(20-8)∶20x=1010-6=4(页)12.解设还要x小时才能耕完这块地14.2+4+3+5=14(人)15.解设需要x小时才能割完15∶(15+10)=x∶(8-3)x=3

某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?火车3小时行135千米,用同样的速度5小时可以行多少千米?

小王开了个布匹市场,昨天进了5000元的蓝布,转手卖了6500元,今天小王入了6000元的蓝布,假设进出货的价格不变,那今天转手卖出能卖多少钱?解:由于价格不变,所以每买一元的布可以卖得的价格比不变,假设今天能卖X元,则昨天卖出/昨天买进=今天卖出/今天买进昨天卖出/昨天买进=X/今天买进X=昨天卖出/昨天买进*今天买进=6500/5000*6000=1.3*6000=7800元答:今日可卖7800元

关于比例的应用题怎样解1、设未知数2、根据题意,列比例方程3、解方程4、写明答话例如:一堆煤,每天烧3吨,可以烧12天,那么每天多烧1吨,可以烧几天?典型的反比例应用题设可以烧a天实际每天烧3+1=4吨那么3:4=a:124a=36a=9那么可以烧9天

我要几个初中数学的应用题。某工厂计划为震区生产A、B两种型号的学生桌椅500套,已解决1250名学生的学习问题,一套A型桌椅(一桌两椅)需木料0.7/立方米,现有库存木料302/立方米。(1)有多少种生产方案?(2)先要把生产的全部桌椅运往震区,已知每套的A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总运费y(元)与生产A型桌椅x(套)之间的关系式,并确定总运费最少的方案和最少的总费用。(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由?1.已知甲乙两车同时同方向从同一地出发点A出发行驶,若甲车的速度是乙车的1.5倍,甲车走了75KM后立即返回与乙车相遇,相遇时乙车走了1H,求甲乙两车的速度2.假设甲乙每辆车最多只能带60L汽油,每升汽油可以行使10KM,途中不能再加油,但两车可以借对方的油,若两车必须沿原路返回出发点A,请你设计一种方案使甲车尽可能远离出发点A,求乙车应借给甲车多少汽油,并求出甲车一共行驶多少千米工艺市场按标价销售某种工艺品时,每件可获利45元,按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件价格所获利润相等1。该工艺品的进价标价分别是多少元2.若每件工艺品按1中求得的进价进货,标价售出,工艺市场每天可售出该工艺品100件,若每件工艺品降价1元,则每天可多售出该工艺品4件,问每件工艺品降价多少元出售,每天所获利润最大?最大利润是多少元?

怎样解决初中数学中的应用题这个问题,必须要具体分析!无非是,三角函式,利润,平面几何!这类题目!理解相关的公式,分清楚,已知量,未知量!!!!!!!如何用已知量,求未知量???????非常简单!关键是理解相关基础公式!这才是以不变应万变的法宝!别搞那些什么题海战术!基础才是硬道理!

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!