初中找规律的数学题技巧
初中找规律的数学题技巧:
找规律题实质:找出数列中的数与其序号之间的对应关系。
1、等差型。
将每一个数与其前一个数相比较,如果差值恒相等,为一个常数(通常称为公差),则第n个数可以表示为an=a1+(n-1)d,其中a1为数列的第一个数,d为差值,(n-1)d为第一位到第n位的差值总和。
例1、3、6、9、12......求第n位数。
解;从第二个数起,每个数都比前一个数增加3,差值为3,所以第n位数是:3+(n-1)×3=3n。
2、增幅为等差。
即将每一次增幅与前次增幅相比较,增幅差值恒相等,为一个常数。
3、等比型。
将每一个数与其前一个数相比较,如果比值恒相等,为一个常数,则第n个数可以表示为an=a1qn-1,其中a1为数列的第一个数,q为比值。
例5、3、6、12、24......求第n位数。
解;从第二个数起,每个数与前一个数的比值恒为2,所以第n位数是:3×2n-1。
4、增幅为等比。
即将每一次增幅与前次增幅相比较,增幅比值恒相等,为一个常数。
例6、2、3、5、9、17......,求数列的第8项是多少?
解:从第二束起,每个数与前一个数的增幅分别为1、2、4、8......所以第6个数为17+24=33,第7个数为33+25=55,第8个数为55+26=119。
5、平方型:数列为每一项序号的平方、序号的平方+常数、序号的平方-常数。
例7、已知数列的前几项为2、5、10、17.....,求数列的第n项为多少。
解:由观察可知数列的前几项分别等于12+1、22+1、32+1、42+1,那么由此可推第n项为n2+1。
例8、观察下列个数:0、3、8、15、24......试按此规律写出第100个数。
解:由观察可知数列的前几项分别等于12-1、22-1、32-1、42-1,那么由此可推第n项为n2-1,
第100个数即为:1002-1=9999。
6、指数。
例9、观察下列个数:1、2、4、8、16......试按此规律写出第11个数。
解:由观察可知数列的前几项分别等于20、21、22、23......那么由此可推第n项为2n-1,
第11个数即为:210=1024。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇