关于全国高中数学联赛的问题
高中数学联赛赛竞赛大纲
—试
全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试
1.平面几何基本要求:掌握初中竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点——费马点。到三角形三顶点距离的平方和最小的点——重心。三角形内到三边距离之积最大的点——重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。在周长一定的筒单闭曲线的集合中,圆的面积最大。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法*。平面凸集、凸包及应用。
2.代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。三倍角公式三角形的一些简单的恒等式,三角不等式。第二数学归纳法。递归一阶、二阶递归,特征方程法。函数迭代求n次迭代*,简单的函数方程*。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。圆排列有重复的排列与组合。简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中斯包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数[x],费马小定理,欧拉函数*,孙子定理*,格点及其质。
3.立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体欧拉定理。体积证法。截面会作截面、表面展开图。
4.平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。因的幂和根轴。
5.抽屉原理。容斥原理。极端原理。集合的划分。覆盖。注:全国高中数学联赛的二试命题的基本原则是向国际数学奥林匹克*拢,总的精神是比高中数学大纲的要求略有提高,在知识方面略有扩展,适当增加一些课堂上没有的内容作为课外活动或奥校的讲授内容。
对教师和教练员的要求是逐步地掌握以上所列内容,并根据学生的具体情况适当地讲授。
有*号的内容二试中暂不考,但在冬令营中可能考。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇