初中所有的关于圆的弦的定理
1不在同一直线上的三点确定一个圆.
2垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2圆的两条平行弦所夹的弧相等
3圆是以圆心为对称中心的中心对称图形
4圆是定点的距离等于定长的点的集合
5圆的内部可以看作是圆心的距离小于半径的点的集合
6圆的外部可以看作是圆心的距离大于半径的点的集合
7同圆或等圆的半径相等
8到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
9定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
10推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
11定理圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
12①直线L和⊙O相交d<r
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
14切线的性质定理圆的切线垂直于经过切点的半径
15推论1经过圆心且垂直于切线的直线必经过切点
16推论2经过切点且垂直于切线的直线必经过圆心
17切线长定理从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
18圆的外切四边形的两组对边的和相等
19弦切角定理弦切角等于它所夹的弧对的圆周角
20推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
30相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积
相等
31推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
32切割线定理从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
33推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
34如果两个圆相切,那么切点一定在连心线上
35①两圆外离d>R+r②两圆外切d=R+r
③两圆相交R-r<d<R+r(R>r)
④两圆内切d=R-r(R>r)⑤两圆内含d<R-r(R>r)
36定理相交两圆的连心线垂直平分两圆的公共弦
37定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
38定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
39正n边形的每个内角都等于(n-2)×180°/n
40定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
41正n边形的面积Sn=pnrn/2p表示正n边形的周长
42正三角形面积√3a/4a表示边长
43如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
44弧长计算公式:L=n兀R/180
45扇形面积公式:S扇形=n兀R?/360=LR/2
46内公切线长=d-(R-r)外公切线长=d-(R+r)
47定理一条弧所对的圆周角等于它所对的圆心角的一半
48推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
49推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
50正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
51余弦定理b?=a?+c?-2accosB注:角B是边a和边c的夹角
52圆的标准方程(x-a)?+(y-b)?=r?注:(a,b)是圆心坐标
53圆的一般方程x?+y?+Dx+Ey+F=0注:D?+E?-4F>0
54弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r
同学,提醒一下,在获得答案后,别忘了及时采纳哦,采纳可获得2经验值奖励!请抽空采纳,谢谢!顺祝春节快乐,学习进步,万事顺利!
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇