小学数学史常识
1.数学小知识
1、在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。
那么你知道这些数字是谁发明的吗?这些数字符号原来是古代印度人发明的,后来传到***,又从***传到欧洲,欧洲人误以为是***人发明的,就把它们叫做“***数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做***数字。现在***数字已成了全世界通用的数字符号。
2、九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。
在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二得四”止,共36句。
因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一得一”。
大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一得一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。
3、圆形,是一个看来简单,实际上是很奇妙的圆形。古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。
就是现在也还用日、月来形容一些圆的东西,如月门、月琴、日月贝、太阳珊瑚等等。是什么人作出第一个圆呢?十几万年前的古人作的石球已经相当圆了。
前面说过一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。山顶洞人是用一种尖状器转着钻孔的,一面钻不透,再从另一面钻。
石器的尖是圆心,它的宽度的一半就是半径,一圈圈地转就可以钻出一个圆的孔。以后到了陶器时代,许多陶器都是圆的。
圆的陶器是将泥土放在一个转盘上制成的。当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。
6000年前的半坡人(在西安)会建造圆形的房子,面积有十多平方米。古代人还发现圆的木头滚着走比较省劲。
后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。当然了因为圆木不是固定在重物下面的,走一段,还得把后面滚出来的圆木滚到前面去,垫在重物前面部分的下方。
大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。
因为轮子的圆心是固定在一根轴上的,而圆心到圆周总是等长的,所以只要道路平坦,车子就可以平衡地前进了。会作圆但不一定就懂得圆的性质。
古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:一中同长也。
意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。
圆周率也就是圆周与直径的比值,是一个非常奇特的数。《周髀算经》上说径一周三,把圆周率看成3,这只是一个近似值。
美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。魏晋时期的刘徽于公元263年给《九章算术》作注。
他发现径一周三只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。
他算到圆内接正3072边形的圆周率,π=3927/1250,请你将它换算成小数,看约等于多少?刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。
请你将这两个分数换成小数,看它们与今天已知的圆周率有几位小数数字相同?在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。
4、数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。
现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。
例如加号曾经有好几种,现在通用+号。+号是由拉丁文et(和的意思)演变而来的。
十六世纪意大利科学家塔塔里亚用意大利文più(加的意思)的第一个字母表示加,草为μ最后都变成了+号。-号是从拉丁文minus(减的意思)演变来的,简写m,再省略掉字母,就成了-了。
也有人说卖酒的商人用-表示酒桶里的酒卖了多少。以后当把新酒灌入大桶的时候,就在-上加一竖,意思是把原线条勾销,这样就成了个+号。
到了十五世纪,德国数学家魏德美正式确定:+用作加号,-用作减号。乘号曾经用过十几种,现在通用两种。
一个是*,最早是英国数学家奥屈特1631年提出的;一个是·,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:*。
2.数学知识都有哪些
1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的***30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的***42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)*180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a*b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位。
3.数学小知识,要六年级的
1、杨辉三角是一个由数字排列成的三角形数表,一般形式如下:111121133114641151010511615201561172135352171……………杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
其实中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
杨辉字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。
而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。
2、一个故事引发的数学家陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。
由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。一天沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。
每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。
大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。
……”陈景润瞪着眼睛,听得入神。从此陈景润对这个奇妙问题产生了浓厚的兴趣。
课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
3、为科学而疯的人由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。
他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷***”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。
康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说康托尔的***论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。
来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。真金不怕火炼,康托尔的思想终于大放光彩。
1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。
1918年1月6日,康托尔在一家精神病院去世。康托尔(1845—1918),生于俄国彼得堡一丹麦犹太血统的富商家庭,10岁随家迁居德国,自幼对数学有浓厚兴趣。
23岁获博士学位,以后一直从事数学教学与研究。他所创立的***论已被公认为全部数学的基础。
4、数学家的“健忘”我国数学家吴文俊教授六十寿辰那天,仍如往常,黎明即起,整天浸沉在运算和公式中。有人特地选定这一天的晚间登门拜门拜访,寒暄之后,说明来意:“听您夫人说,今天是您六十大寿,特来表示祝贺。”
吴文俊仿佛听了一件新闻,恍然大悟地说:“噢,是吗?我倒忘了。”来人暗暗吃惊,心想:数学家的脑子里装满了数字,怎么连自己的生日也记不住?其实,吴文俊对日期的记忆力是很强的。
他在将近花甲之年的时候,又先攻了一个难题——“机器证明”。这是为了改变了数学家“一支笔、一张纸、一个脑袋”的劳动方式,运用电子计算机来实现数学证明,以便数学家能腾出更多的时间来进行创造性的工作,他在进行这项课题的研究过程中,对于电子计算机安装的日期、为计算机最后编成三百多道“指令”程序的日期,都记得一清二楚。
后来那位祝寿的来客在闲谈中问起他怎么连自己生日也记不住的时候,他知着回答:“我从来不记那些没有意义的数字。在我看来生日,早一天,晚一天,有什么要紧?所以我的生日,爱人的生日,孩子的生日,我一概不记,他从不想要为自己或家里的人庆祝生日,就连我结婚的日子,也忘了。
但是有些数字非记不可,也很容易记住……”5、苹果树下的例行出步1884年春天,年轻的数学家阿道夫·赫维茨从哥廷根来到哥尼斯堡担任副教授,年龄还不到25。
4.数学的小知识
阿基米德(Archimedes)1、《砂粒计算》,是专讲计算方法和计算理论的一本著作。
阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。2、《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:3.14083、《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。
阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的。在这部著作中,他还提出了著名的阿基米德公理。
4、《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
5、《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。
在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。6、《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
7、《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。8、《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
毕达哥拉斯1、勾股定理:任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角(32+42=52).毕达哥拉斯定理:给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和.反过来也是对的:如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形.虽然这个定理以后来的希腊数学家毕达哥拉斯(大约公元前540年)的名字命名,但有证据表明,该定理的历史可以追溯到华达哥拉斯之前1000年的古巴比伦的汉漠拉比年代.把该定理名字归于毕达哥拉斯,大概是因为他第一个对自己在学校中所写的证明作了记录.毕达哥拉斯定理的结论和它的证明,遍及于世界的各个大洲、各种文化及各个时期.事实上,这一定理的证明之多,是其他任何发现所无法比拟的!2、无理数毕达哥拉斯学派认为,任意数都可以用整数或整数的比来表示。但有一个学生叫希伯斯发现:若一个等腰直角三角形的边为1,那么根据毕达哥拉斯定理(即勾股定理,只是西方这么叫,事实上还是咱们的祖先最先发现的!^.^),斜边长的平方应为1+1=2,平方等于2的数就无法用整数或分数来表示。
他把这个发现告诉了别人,但这一发现就推倒了“毕”学派的根本思想。于是他就被人扔河里处死了。
后来人们肯定了这一发现,为区别“毕”派有理数,所以取名为无理数。无理数的口诀记忆√2≈1.41421:意思意思而已√3≈1.7320:一起生鹅蛋√5≈2.2360679:两鹅生六蛋(送)六妻舅√7≈2.6457513:二妞是我,气我一生e≈2.718:粮店吃一把π≈3.14159:山巅一寺一壶酒。
5.我需要3个数学知识、故事(越短越好)
说四个很短的:高斯上小学的时候老师要同学们计算1+2+3+……+98+99+100。
老师本人都是老老实实挨着计算,高斯很快算完并告知其方法是首尾数字相加再乘以50,另老师惊叹。公元六世纪毕达哥拉斯学派学者希伯斯在研究长为1的正方形的对角线长度的时候发现了无理数,不被毕达哥拉斯学派承认,将其扔进海里淹死,造成数学史上第一次危机,即不承认无理数并阻止其传播。
著名数学家阿贝尔有一次给他的恩师霍姆伯写信时,信尾署的日期是三次根号6064321219,涉及开方,开出来是1823.5908275。(年),而365*0.5908275=215.652(日)≈216日,那年是平年,所以应该是1823年八月四日。
华罗庚有次出国访问,在飞机上,旁边一个乘客看一本数学杂志,上面一道题是:三次根号59319是多少,华罗庚看完脱口而出是39,另大家惊叹。(他解释的算法略去)。
6.数学小知识有啥
看看[杨辉三角]吧!
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1
11
121
1331
14641
15101051
1615201561
172135352171
……………
杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。其实中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。杨辉字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。
奇*奇=奇
奇+偶=奇
奇+奇=偶
奇*偶=偶
偶+偶=偶
偶*偶=偶
无声胜有声
在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721*761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢?
因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。
科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。
7.关于数学的小知识
中国古代数学史曾经有自己光辉灿烂的篇章..。
在国外这也叫做帕斯卡三角形。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。
现在要求我们用编程的方法输出这样的数表。同时这也是多项式(a+b)^n打开括号后的各个项的二次项系数的规律即为0(a+b)^0(0nCr0)1(a+b)^1(1nCr0)(1nCr1)2(a+b)^2(2nCr0)(2nCr1)(2nCr2)3(a+b)^3(3nCr0)(3nCr1)(3nCr2)(3nCr3).。
,b都为1的时候)[上述y^x指y的x次方,而杨辉三角的发现就是十分精彩的一页。杨辉字谦光,北宋时期杭州人。
在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图.,称之为“开方作法本源”图。而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。
具体的用法我们会在教学内容中讲授..,而其余的数则是等于它肩上的两个数之和。其实..,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位..,辑录了如上所示的三角形数表。
在他1261年所著的《详解九章算法》一书中杨辉三角是一个由数字排列成的三角形数表,一般形式如下,字谦光,它的两条斜边都是由数字1组成的。杨辉而杨辉三角的发现就是十分精彩的一页..。
中国古代数学史曾经有自己光辉灿烂的篇章;(anCrb)指组合数]其实.因此杨辉三角第x层第y项直接就是(ynCrx)我们也不难得到第x层的所有项的总和为2^x(即(a+b)^x中a,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位:111121133114641151010511615201561172135352171……………杨辉三角最本质的特征是,北宋时期杭州人。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇