当前位置:新励学网 > 应试教育 > 小学数学简便运算技巧

小学数学简便运算技巧

发表时间:2024-07-13 02:21:06 来源:网友投稿

  简便运算是数学教学中一个不可或缺的内容,被视为思维训练的一种重要手段,是培养数感的主要途径之一。接下来我为你整理了小学数学简便运算技巧,一起来看看吧。

  小学数学简便运算技巧  (一)运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。

  如:5.7+3.1+0.9+1.3,等。

  (二)运用乘法的交换律、结合律进行简算。

  如:2.50.12584等,如果遇到除法同样适用,或将除法变为乘法来计算。如:8.3678.36.7等。

  (三)运用乘法分配律进行简算,遇到除以一个数,先化为乘以一个数的倒数,再分配。

  如:2.5(100+0.4),还应注意,有些题目是运用分配律的逆运算来简算:即提取公因数。如:0.9367+330.93。

  (四)运用减法的性质进行简算。减法的性质用字母公式表示:A-B-C=A-(B+C),同时注意逆进行。

  如:7691-(691+250)。

  (五)运用除法的性质进行简算。除法的性质用字母公式表示如下:ABC=A(BC),同时注意逆进行,

  如:736254。

  (六)接近整百的数的运算。这种题型需要拆数、转化等技巧配合。

  如;302+76=300+76+2,298-188=300-188-2,等。

  (七)认真观察某项为0或1的运算。

  如:7.93+2.07(4.5-4.5)等。

  小学数学简便运算方法  提取公因式

  这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。

  注意相同因数的提取。

  例如:

  0.921.41+0.928.59

  =0.92(1.41+8.59)

  借来借去法

  看到名字,就知道这个方法的含义。用此方法时需要注意观察,发现规律。还要注意还哦,有借有还,再借不难。

  考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。

  例如:

  9999+999+99+9

  =9999+1+999+1+99+1+9+14

  拆分法

  顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些好朋友,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。

  例如:

  3.212.525

  =80.412.525

  =812.50.425

  加法结合律

  注意对加法结合律

  (a+b)+c=a+(b+c)

  的运用,通过改变加数的位置来获得更简便的运算。

  例如:

  5.76+13.67+4.24+6.33

  =(5.76+4.24)+(13.67+6.33)

  拆分法和乘法分配律结

  这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。

  例如:

  349.9=34(10-0.1)

  案例再现:57101=?

  利用基准数

  在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。

  例如:

  2072+2052+2062+2042+2083

  =(2062x5)+10-10-20+21

  利用公式法

  (1)加法:

  交换律,a+b=b+a,

  结合律,(a+b)+c=a+(b+c).

  (2)减法运算性质:

  a-(b+c)=a-b-c,

  a-(b-c)=a-b+c,

  a-b-c=a-c-b,

  (a+b)-c=a-c+b=b-c+a.

  (3):乘法(与加法类似):

  交换律,a*b=b*a,

  结合律,(a*b)*c=a*(b*c),

  分配率,(a+b)xc=ac+bc,

  (a-b)*c=ac-bc.

  (4)除法运算性质(与减法类似):

  a(b*c)=abc,

  a(bc)=abxc,

  abc=acb,

  (a+b)c=ac+bc,

  (a-b)c=ac-bc.

  前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。其规律是同级运算中,加号或乘号后面加上或去掉括号,后面数值的运算符号不变。

  裂项法

  分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.

  常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

  分数裂项的三大关键特征:

  (1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

  (2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数首尾相接

  (3)分母上几个因数间的差是一个定值。

  小学数学简便运算例题  例1:

  283+52+117+148

  =(283+117)+(52+48)

  (运用加法交换律和结合律)。

  减号或除号后面加上或去掉括号,后面数值的运算符号要改变。

  例2:

  657-263-257

  =657-257-263

  =400-263

  (运用减法性质,相当加法交换律。)

  例3:

  195-(95+24)

  =195-95-24

  =100-24

  (运用减法性质)

  例4:

  150-(100-42)

  =150-100+42

  (同上)

  例5:

  (0.75+125)*8

  =0.75*8+125*8=6+1000

  .(运用乘法分配律))

  例6:

  (125-0.25)*8

  =125*8-0.25*8

  =1000-2

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!