当前位置:新励学网 > 应试教育 > 高中数学公式定理归纳

高中数学公式定理归纳

发表时间:2024-07-13 06:09:48 来源:网友投稿

正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2

圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s*h圆柱体V=pi*r2h

图形周长面积体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)*(a+b-c)*1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]}(“三斜求积”南宋秦九韶)

|ab1|

S△=1/2*|cd1|

|ef1|

【|ab1|

|cd1|为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d),C(e,f),这里ABC

|ef1|

选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】

秦九韶三角形中线面积公式:

S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3

其中Ma,Mb,Mc为三角形的中线长.

平行四边形的面积=底×高

梯形的面积=(上底+下底)×高÷2

直径=半径×2半径=直径÷2

圆的周长=圆周率×直径=

圆周率×半径×2

圆的面积=圆周率×半径×半径

长方体的表面积=

(长×宽+长×高+宽×高)×2

长方体的体积=长×宽×高

正方体的表面积=棱长×棱长×6

正方体的体积=棱长×棱长×棱长

圆柱的侧面积=底面圆的周长×高

圆柱的表面积=上下底面面积+侧面积

圆柱的体积=底面积×高

圆锥的体积=底面积×高÷3

长方体(正方体、圆柱体)

的体积=底面积×高

平面图形

名称符号周长C和面积S

正方形a—边长C=4a

S=a2

长方形a和b-边长C=2(a+b)

S=ab

三角形a,b,c-三边长

h-a边上的高

s-周长的一半

A,B,C-内角

其中s=(a+b+c)/2S=ah/2

=ab/2?sinC

=[s(s-a)(s-b)(s-c)]1/2

=a2sinBsinC/(2sinA)

1过两点有且只有一条直线

2两点之间线段最短

3同角或等角的补角相等

4同角或等角的余角相等

5过一点有且只有一条直线和已知直线垂直

6直线外一点与直线上各点连接的所有线段中,垂线段最短

7平行公理经过直线外一点,有且只有一条直线与这条直线平行

8如果两条直线都和第三条直线平行,这两条直线也互相平行

9同位角相等,两直线平行

10内错角相等,两直线平行

11同旁内角互补,两直线平行

12两直线平行,同位角相等

13两直线平行,内错角相等

14两直线平行,同旁内角互补

15定理三角形两边的和大于第三边

16推论三角形两边的差小于第三边

17三角形内角和定理三角形三个内角的和等于180°

18推论1直角三角形的两个锐角互余

19推论2三角形的一个外角等于和它不相邻的两个内角的和

20推论3三角形的一个外角大于任何一个和它不相邻的内角

21全等三角形的对应边、对应角相等

22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等

23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等

24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等

25边边边公理(sss)有三边对应相等的两个三角形全等

26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等

27定理1在角的平分线上的点到这个角的两边的距离相等

28定理2到一个角的两边的距离相同的点,在这个角的平分线上

29角的平分线是到角的两边距离相等的所有点的集合

30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33推论3等边三角形的各角都相等,并且每一个角都等于60°

34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35推论1三个角都相等的三角形是等边三角形

36推论2有一个角等于60°的等腰三角形是等边三角形

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38直角三角形斜边上的中线等于斜边上的一半

39定理线段垂直平分线上的点和这条线段两个端点的距离相等

40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42定理1关于某条直线对称的两个图形是全等形

43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

48定理四边形的内角和等于360°

49四边形的外角和等于360°

50多边形内角和定理n边形的内角的和等于(n-2)×180°

51推论任意多边的外角和等于360°

52平行四边形性质定理1平行四边形的对角相等

53平行四边形性质定理2平行四边形的对边相等

54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3平行四边形的对角线互相平分

56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3对角线互相平分的四边形是平行四边形

59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60矩形性质定理1矩形的四个角都是直角

61矩形性质定理2矩形的对角线相等

62矩形判定定理1有三个角是直角的四边形是矩形

63矩形判定定理2对角线相等的平行四边形是矩形

64菱形性质定理1菱形的四条边都相等

65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即s=(a×b)÷2

67菱形判定定理1四边都相等的四边形是菱形

68菱形判定定理2对角线互相垂直的平行四边形是菱形

69正方形性质定理1正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1关于中心对称的两个图形是全等的

72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理等腰梯形在同一底上的两个角相等

75等腰梯形的两条对角线相等

76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

77对角线相等的梯形是等腰梯形

78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=l×h

83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!