高中人教版数学必修1-5的所有公式整理
你好
同角三角函数的基本关系式
倒数关系:商的关系:平方关系:
tanα•cotα=1
sinα•cscα=1
cosα•secα=1sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secαsin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”)
诱导公式(口诀:奇变偶不变,符号看象限。)
sin(-α)=-sinα
cos(-α)=cosαtan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα•tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα•tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半角的正弦、余弦和正切公式三角函数的降幂公式
二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式三角函数的积化和差公式
α+βα-β
sinα+sinβ=2sin———•cos———
22
α+βα-β
sinα-sinβ=2cos———•sin———
22
α+βα-β
cosα+cosβ=2cos———•cos———
22
α+βα-β
cosα-cosβ=-2sin———•sin———
221
sinα•cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα•sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα•cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα•sinβ=—-[cos(α+β)-cos(α-β)]
2
化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式
集合、函数
集合简单逻辑
任一x∈Ax∈B,记作AB
AB,BAA=B
AB={x|x∈A,且x∈B}
AB={x|x∈A,或x∈B}
card(AB)=card(A)+card(B)-card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)四种命题的关系
(3)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
函数的性质指数和对数
(1)定义域、值域、对应法则
(2)单调性
对于任意x1,x2∈D
若x1<x2f(x1)<f(x2),称f(x)在D上是增函数
若x1<x2f(x1)>f(x2),称f(x)在D上是减函数
(3)奇偶性
对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数
若f(-x)=-f(x),称f(x)是奇函数
(4)周期性
对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂
正分数指数幂的意义是
负分数指数幂的意义是
(2)对数的性质和运算法则
loga(MN)=logaM+logaN
logaMn=nlogaM(n∈R)
指数函数对数函数
(1)y=ax(a>0,a≠1)叫指数函数
(2)x∈R,y>0
图象经过(0,1)
a>1时,x>0,y>1;x<0,0<y<1
0<a<1时,x>0,0<y<1;x<0,y>1
a>1时,y=ax是增函数
0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数
(2)x>0,y∈R
图象经过(1,0)
a>1时,x>1,y>0;0<x<1,y<0
0<a<1时,x>1,y<0;0<x<1,y>0
a>1时,y=logax是增函数
0<a<1时,y=logax是减函数
指数方程和对数方程
基本型
logaf(x)=bf(x)=ab(a>0,a≠1)
同底型
logaf(x)=logag(x)f(x)=g(x)>0(a>0,a≠1)
换元型f(ax)=0或f(logax)=0
数列
数列的基本概念等差数列
(1)数列的通项公式an=f(n)
(2)数列的递推公式
(3)数列的通项公式与前n项和的关系
an+1-an=d
an=a1+(n-1)d
a,A,b成等差2A=a+b
m+n=k+lam+an=ak+al
等比数列常用求和公式
an=a1qn_1
a,G,b成等比G2=ab
m+n=k+laman=akal
不等式
不等式的基本性质重要不等式
a>bb<a
a>b,b>ca>c
a>ba+c>b+c
a+b>ca>c-b
a>b,c>da+c>b+d
a>b,c>0ac>bc
a>b,c<0ac<bc
a>b>0,c>d>0ac<bd
a>b>0dn>bn(n∈Z,n>1)
a>b>0>(n∈Z,n>1)
(a-b)2≥0
a,b∈Ra2+b2≥2ab
|a|-|b|≤|a±b|≤|a|+|b|
证明不等式的基本方法
比较法
(1)要证明不等式a>b(或a<b),只需证明
a-b>0(或a-b<0=即可
(2)若b>0,要证a>b,只需证明,
要证a<b,只需证明
综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
分析法分析法是从寻求结论成立的充分条件入手,逐步寻求所需条件成立的充分条件,直至所需的条件已知正确时为止,明显地表现出“持果索因”
复数
代数形式三角形式
a+bi=c+dia=c,b=d
(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)-(c+di)=(a-c)+(b-d)i
(a+bi)(c+di)=(ac-bd)+(bc+ad)i
a+bi=r(cosθ+isinθ)
r1=(cosθ1+isinθ1)•r2(cosθ2+isinθ2)
=r1•r2〔cos(θ1+θ2)+isin(θ1+θ2)〕
〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)
k=0,1,……,n-1
解析几何
1、直线
两点距离、定比分点直线方程
|AB|=||
|P1P2|=
y-y1=k(x-x1)
y=kx+b
两直线的位置关系夹角和距离
或k1=k2,且b1≠b2
l1与l2重合
或k1=k2且b1=b2
l1与l2相交
或k1≠k2
l2⊥l2
或k1k2=-1l1到l2的角
l1与l2的夹角
点到直线的距离
2.圆锥曲线
圆椭圆
标准方程(x-a)2+(y-b)2=r2
圆心为(a,b),半径为R
一般方程x2+y2+Dx+Ey+F=0
其中圆心为(),
半径r
(1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系
(2)两圆的位置关系用圆心距d与半径和与差判断椭圆
焦点F1(-c,0),F2(c,0)
(b2=a2-c2)
离心率
准线方程
焦半径|MF1|=a+ex0,|MF2|=a-ex0
双曲线抛物线
双曲线
焦点F1(-c,0),F2(c,0)
(a,b>0,b2=c2-a2)
离心率
准线方程
焦半径|MF1|=ex0+a,|MF2|=ex0-a抛物线y2=2px(p>0)
焦点F
准线方程
坐标轴的平移
这里(h,k)是新坐标系的原点在原坐标系中的坐标。
1.集合元素具有①确定性②互异性③无序性
2.集合表示方法①列举法②描述法
③韦恩图④数轴法
3.集合的运算
⑴A∩(B∪C)=(A∩B)∪(A∩C)
⑵Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
4.集合的性质
⑴n元集合的子集数:2n
真子集数:2n-1;非空真子集数:2n-2
高中数学概念总结
一、函数
1、若集合A中有n个元素,则集合A的所有不同的子集个数为,所有非空真子集的个数是。
二次函数的图象的对称轴方程是,顶点坐标是。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即,和(顶点式)。
2、幂函数,当n为正奇数,m为正偶数,m<n时,其大致图象是
3、函数的大致图象是
由图象知函数的值域是,单调递增区间是,单调递减区间是。
二、三角函数
1、以角的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点P到原点的距离记为,则sin=,cos=,tg=,ctg=,sec=,csc=。
2、同角三角函数的关系中,平方关系是:,,;
倒数关系是:,,;
相除关系是:,。
3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如:,=,。
4、函数的最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。
5、三角函数的单调区间:
的递增区间是,递减区间是;的递增区间是,递减区间是,的递增区间是,的递减区间是。
6、
7、二倍角公式是:sin2=
cos2===
tg2=。
8、三倍角公式是:sin3=cos3=
9、半角公式是:sin=cos=
tg===。
10、升幂公式是:。
11、降幂公式是:。
12、万能公式:sin=cos=tg=
13、sin()sin()=,
cos()cos()==。
14、=;
=;
=。
15、=。
16、sin180=。
17、特殊角的三角函数值:
0
sin010
cos100
tg01不存在0不存在
ctg不存在10不存在0
18、正弦定理是(其中R表示三角形的外接圆半径):
19、由余弦定理第一形式,=
由余弦定理第二形式,cosB=
20、△ABC的面积用S表示,外接圆半径用R表示,内切圆半径用r表示,半周长用p表示则:
①;②;
③;④;
⑤;⑥
21、三角学中的射影定理:在△ABC中,,…
22、在△ABC中,,…
23、在△ABC中:
24、积化和差公式:
①,
②,
③,
④。
25、和差化积公式:
①,
②,
③,
④。
三、反三角函数
1、的定义域是[-1,1],值域是,奇函数,增函数;
的定义域是[-1,1],值域是,非奇非偶,减函数;
的定义域是R,值域是,奇函数,增函数;
的定义域是R,值域是,非奇非偶,减函数。
2、当;
对任意的有:
当。
3、最简三角方程的解集:
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇