当前位置:新励学网 > 应试教育 > 求小学六年级上册的数学概念

求小学六年级上册的数学概念

发表时间:2024-07-15 17:23:45 来源:网友投稿

人教版小学六年级数学上册概念整理汇总

单元一位置

1.找位置:先列后行。格式为:(列,行)。例如:(a,b)。

2.位置的表示方法:①、两边小括号;②、中间是逗号;③先写列,再写行。

3.平移方法:左右平移,列变行不变;上下平移,行变列不变。

单元二分数乘法

1.分数乘整数的意义和整数乘法的意义相同:就是求几个相同加数的和的简便运算。

例如:++=×3(b0)

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。例如:a×(×a)=(为了计算简便,能约分的要先约分,然后再乘。)

【注:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算】

3.整数乘分数;

①、分数乘以整数,可以看作是求几个分数相加的和是多少。

例如:×n=++、、、、、、(b0)

②、整数乘以分数,可以看作是求整数的几分之几是多少。

例如:n×的意义是:表示求n的是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。例如:×=(b、d0)【注:为了计算简便,可以先约分再乘】

5.乘积是1的两个数叫互为倒数。例如:×=1,那和就是互为倒数。

6.求一个数(0除外)的倒数的方法:把这个分数的分子、分母调换位置。

1的倒数是1。0没有倒数。

真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

【注:倒数必须是成对的两个数,单独的一个数不能称做倒数】

7.一个数(0除外)乘以一个真分数,所得的积小于它本身。

8.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

9.一个数(0除外)乘以一个带分数,所得的积大于它本身。

10.解答分数乘法应用题相关概念:

①分数乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?

②找单位“1”的方法:从含有分数的关键句中找,注意“的”前;“比”后的规则。

③“增加”、“提高”、“增产”是“多”的意思;“减少”、“下降”、“裁员”是“少”的意思;“相当于”、“占”、“是”“等于”的意思。

④当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

单元三分数除法概念总结

1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

例如:表示:已知两个数的积是与其中一个因数,求另一个因数是多少。

2.①、分数除以整数(0除外),等于分数乘这个整数的倒数。

例如:÷c=×(a、c0)

②整数除以分数等于整数乘以这个分数的倒数。

例如:c÷=c×(a0)

3.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

4.两个数相除又叫做两个数的比。

5、“:”是比号,读做“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。  

例如:a:b=(a是比的前项;b是比的后项;是比值,比值一般是分数,可以是整数、也可以是小数)

6、求比值、化简比的方法:都可以用前项÷后项。例如::=÷(b、d0)

8.比同除法比较:比的前项相当于被除数,后项相当于除数,比值相当于商。

例如:a:b=a÷b=(b0)。

9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。例如:a:b=a÷b=(b0)。

10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。例如:a:b=a:b=(b0)

11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。

12、①、一个数(0除外)除以一个真分数,所得的商大于它本身。

②、一个数(0除外)除以一个假分数,所得的商小于或等于它本身。

③、一个数(0除外)除以一个带分数,所得的商小于它本身。

单元四圆

1.圆的定义:平面上的一种曲线图形。例如:“O”。

2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.例如:“⊙”

3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。例如:“⊙”

4.圆心确定圆的位置,半径确定圆的大小。

5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。

例如:“⊙”

6.①在同一个圆内,所有的半径都相等,所有的直径都相等。

②在同一个圆内,有无数条半径,有无数条直径。

③在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。

用字母表示为:d=2r或r=d÷2

7.圆的周长:围成圆的曲线的长度叫做圆的周长,用“C”表示。

8.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把任意一个圆的周长和直径的比值叫做圆周率,用字母“π”表示。圆周率是一个无限不循环小数。在计算时取π≈3.14。

9.圆的周长公式:C=πd或C=2πr

10.圆的面积:圆所占面积的大小叫圆的面积。S=π×r×r=πr²

11.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

12.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

13.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²

或 S=π(R²-r²)。(其中R=r+环的宽度.)

14.环形的周长=外圆周长+内圆周长

15.半圆的周长等于圆的周长的一半加直径。(C=2πr×+2r)

半圆的周长公式:C=πd×+d 或 C=πr+2r或C=2πr×+2r

16.半圆面积=圆的面积÷2  公式为:S=πr²÷2

17.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。

例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。

18.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。

例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。

19.①当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;

②当一个圆的直径增加a厘米时,它的周长就增加πa厘米。

20.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.

21.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。

22.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。

23.①只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

②只有2条对称轴的图形是:长方形

③只有3条对称轴的图形是:等边三角形

④只有4条对称轴的图形是:正方形;

⑤有无数条对称轴的图形是:圆、圆环。

24.直径所在的直线是圆的对称轴。

25.环形的面积公式:S=πR²-πr²或S=π(R²-r²)

单元五 百分数

1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。

2.百分数的意义:表示一个数是另一个数的百分之几。例如:25%的意义:表示一个数是另一个数的25%。

3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。

①小数与百分数互化的方法:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,只要把百分号去掉,同时把数点向左移动两位。

②百分数与分数互化的方法:把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数;

③百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

6.百分率公式:

合格率=合格人数÷总人数100%发芽率=发芽数量÷总数量100%

出勤率=出勤人数÷总人数100%

7.应纳税额:缴纳的税款叫应纳税额。

8.应纳税额的计算:应纳税额=各种收入×税率

9.本金:存入银行的钱叫做本金。

10.利息:取款时银行多支付的钱叫做利息。

11.利率:利息与本金的比值叫做利率。

12.国债利息的计算公式:利息=本金×利率×时间

13.本息:本金与利息的总和叫做本息。

单位换算

1、长度单位换算

1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米

2、面积单位换算

1平方千米=100公顷1公顷10000平方米1平方米=100平方分米

1平方分米=100平方厘米

3、体(容)积单位换算

1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米

1立方厘米=1毫升

4、重量单位换算:1吨=1000千克1千克=1000克

运算定律

1.加法交换律:两数相加交换加数的位置,和不变。a+b=b+a

2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。如:a+b+c=a+c+b=a+(b+c)

3.乘法交换律:两数相乘,交换因数的位置,积不变。ab=ba

4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。如:a×b×c=a×c×b=a×(b×c)

5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(ab)×c=acbc

6、加、减法性质:一个数连续减去几个数,可以改写成减去这几个数的和。

如:a-b-c=a-(b+c)

7、乘、除法性质:一个数连续除以几个数,可以改写成乘以这几个数的积。

a÷b÷c=a÷(b×c)

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!