当前位置:新励学网 > 应试教育 > 跪求一道初中数学竞赛题的答案,题目如下:

跪求一道初中数学竞赛题的答案,题目如下:

发表时间:2024-07-17 02:58:31 来源:网友投稿

显然x.y同奇偶,可以得到若他们是偶数,那么它们的含有的素数2的次数是一样的,设x=2^s*p,y=2^s*q,s≥0,p,q为奇数,原式等于4*2^[2s]*pq/2^s[p+q]=4*2^s*pq/[p+q],为了是奇数,设p+q=4*2^s*r,p-q=2t,原式=2^[2s+2]r-t²/r=奇数,设t²=rm,由于t²模4余1,所以r,m模4同余,即它们要么模4余1,要么模4余-1,①模4余1,得到=2^[2s+2]r-rm=4n-1(mod4)②模4余-1,得到=2^[2s+2]r-rm=4n-1(mod4),可见这个奇数若存在总是模4余1的,在题目中取k=n,必有4k-1整除4xy/x+y。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!