初中数学分式教程和题的解法
分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程
分式方程的解法
①去分母
方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时.不要忘了改变符号。
②按解整式方程的步骤
移项,若有括号应去括号,注意变号,合并同类项,把系数化为1
求出未知数的值;
③验根
求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。
例题:
(1)x/(x+1)=2x/(3x+3)+1
两边乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
-2x=3
x=2/-3
分式方程要检验
经检验,x=-2/3是方程的解
(2)2/(x-1)=4/(x^2-1)
两边乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1
分式方程要检验
把x=1带入原方程,使分母为0,是增根。
所以原方程2/x-1=4/x^2-1
无解
一定要检验!
例:
2x-3+1/(x-5)=x+2+1/(x-5)
两边同时减1/(x-5),得x=5
带入原方程,使分母为0,所以方程无解!
检验格式:把x=a
带入最简公分母,若x=a使最简公分母为0,则a是原方程的增根.若x=a使最简公分母不为零,则a是原方程的根.
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇