当前位置:新励学网 > 应试教育 > 高中导数的题型及解题技巧

高中导数的题型及解题技巧

发表时间:2024-07-18 22:45:03 来源:网友投稿

高中导数的题型及解题技巧如下:

一、利用导数研究切线问题

1、解题思路:关键是要有切点横坐标,以及利用三句话来列式。具体来说题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后利用三句话来列式:切点在切线上;切点在曲线上;斜率等于导数。用这三句话百分之百可以解答全部切线问题。

2、另外二次函数的切线问题,则可不需要用这三句话来解答,可以直接联立切线和曲线的方程组,令判别式等于0。

二、利用导数研究函数的单调性

解题思路:求定义域——求导——讨论参数,判断单调性。首先务必要先求定义域,以免单调区间落在定义域之外;其次求导务必要仔细,要检查,否则求导错误,后面全军覆没;最后带参数的函数,务必要谈论参数,根据参数来判断单调性和求单调区间。

三、利用导数研究函数的极值和最值

解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值前面跟(2)的解题思路一样,后面衔接下去,就是求极值和求最值了。要想求极值必须先判断单调性。而求最值则需要依据单调性、极值和端点值来判断。

四、利用导数研究不等式

1、解题思路:求定义域——求导——讨论参数,判断单调性——求极值——求最值——解不等式。从这个解题思路可以看得出,导数不等式的本质是最值问题。因此导数不等式,就是必须先求最值。

2、利用导数不等式,绝对是超级难点,也是高考导数大题的第2小问常考的考点。大家要紧紧抓住“导数不等式就是最值问题”这句话,循序渐进地思考解题,多训练,必能完成此类题的攻克和解题。

五、利用导数研究方程

解题思路:第一步,提取参数到一边,设另一边为函数h(x);第二步,对函数h(x)求导,判断单调性,求极值,并作图;第三步,观察比较直线与曲线h(x)的交点个数。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!