当前位置:新励学网 > 应试教育 > 高中数学公式大全完整版

高中数学公式大全完整版

发表时间:2024-07-18 22:46:07 来源:网友投稿

1.元素与集合的关系

,.

2.德摩根公式

.

3.包含关系

4.容斥原理

.

5.集合的子集个数共有个;真子集有–1个;非空子集有–1个;非空的真子集有–2个.

6.二次函数的解析式的三种形式

(1)一般式;

(2)顶点式;

(3)零点式.

7.解连不等式常有以下转化形式

.

8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地,方程有且只有一个实根在内,等价于,或且,或且.

9.闭区间上的二次函数的最值

二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则;

,,.

(2)当a<0时,若,则,若,则,.

10.一元二次方程的实根分布

依据:若,则方程在区间内至少有一个实根.

设,则

(1)方程在区间内有根的充要条件为或;

(2)方程在区间内有根的充要条件为或或或;

(3)方程在区间内有根的充要条件为或.

11.定区间上含参数的二次不等式恒成立的条件依据

(1)在给定区间的子区间(形如,,不同)上含参数的二次不等式(为参数)恒成立的充要条件是.

(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.

(3)恒成立的充要条件是或.

12.真值表

p

q

非p

p或q

p且q

13.常见结论的否定形式

原结论

反设词

原结论

反设词

不是

至少有一个

一个也没有

都是

不都是

至多有一个

至少有两个

大于

不大于

至少有个

至多有()个

小于

不小于

至多有个

至少有()个

对所有

成立

存在某

不成立

对任何

不成立

存在某

成立

14.四种命题的相互关系

原命题       互逆       逆命题

若p则q               若q则p

       互       互

  互        为   为        互

  否                     否

           逆   逆           

         否      否

否命题               逆否命题   

若非p则非q    互逆      若非q则非p

15.充要条件

(1)充分条件:若,则是充分条件.

(2)必要条件:若,则是必要条件.

(3)充要条件:若,且,则是充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

16.函数的单调性

(1)设那么

上是增函数;

上是减函数.

(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.

17.如果函数和都是减函数,则在公共定义域内,和函数也是减函数;如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.

18.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.

19.若函数是偶函数,则;若函数是偶函数,则.

20.对于函数(),恒成立,则函数的对称轴是函数;两个函数与的图象关于直线对称.

21.若,则函数的图象关于点对称;若,则函数为周期为的周期函数.

22.多项式函数的奇偶性

多项式函数是奇函数的偶次项(即奇数项)的系数全为零.

多项式函数是偶函数的奇次项(即偶数项)的系数全为零.

23.函数的图象的对称性

(1)函数的图象关于直线对称

.

(2)函数的图象关于直线对称

.

24.两个函数图象的对称性

(1)函数与函数的图象关于直线(即轴)对称.

(2)函数与函数的图象关于直线对称.

(3)函数和的图象关于直线y=x对称.

25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!