当前位置:新励学网 > 应试教育 > 高中数学不等式总结

高中数学不等式总结

发表时间:2024-07-19 06:48:28 来源:网友投稿

※不等式性质及证明※

1.不等式的性质

比较两实数大小的方法——求差比较法

定理1:若,则;若,则.即。

说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。

定理2:若,且,则。

说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数;定理2称不等式的传递性。

定理3:若,则。

说明:(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向;

(2)定理3的证明相当于比较与的大小,采用的是求差比较法;

(3)定理3的逆命题也成立;

(4)不等式中任何一项改变符号后,可以把它从一边移到另一边。

定理3推论:若。

说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式

定理4.如果且,那么;如果且,那么。

推论1:如果且,那么。

说明:(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;(2)两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘。这就是说两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。

推论2:如果,那么。

定理5:如果,那么。

2.基本不等式

定理1:如果,那么(当且仅当时取“”)。

说明:(1)指出定理适用范围:;(2)强调取“”的条件。

定理2:如果是正数,那么(当且仅当时取“=”)

说明:(1)这个定理适用的范围:;(2)我们称的算术平均数,称的几何平均数。即:两个正数的算术平均数不小于它们的几何平均数。

3.常用的证明不等式的方法

(1)比较法

比较法证明不等式的一般步骤:作差—变形—判断—结论;为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以便判断其正负。

(2)综合法

利用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法;利用某些已经证明过的不等式和不等式的性质时要注意它们各自成立的条件。

综合法证明不等式的逻辑关系是:,及从已知条件出发,逐步推演不等式成立的必要条件,推导出所要证明的结论。

(3)分析法

证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。

(1)“分析法”是从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”;

(2)综合过程有时正好是分析过程的逆推,所以常用分析法探索证明的途径,然后用综合法的形式写出证明过程

※不等式解法及应用※

1.不等式的解法

解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。

高考试题中对解不等式有较高的要求,近两年不等式知识占相当大的比例。

(1)同解不等式((1)与同解;

(2)与同解,与同解;

(3)与同解);

2.一元一次不等式

解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础,必须熟练掌握,灵活应用。

情况分别解之。

3.一元二次不等式

或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象

4.分式不等式

分式不等式的等价变形:>0f(x)•g(x)>0,≥0。

5.简单的绝对值不等式

绝对值不等式适用范围较广,向量、复数的模、距离、极限的定义等都涉及到绝对值不等式。高考试题中对绝对值不等式从多方面考查。

解绝对值不等式的常用方法:

①讨论法:讨论绝对值中的式于大于零还是小于零,然后去掉绝对值符号,转化为一般不等式;

②等价变形:

解绝对值不等式常用以下等价变形:

|x|0),

|x|>ax2>a2x>a或x0)。

一般地有:

|f(x)|<g(x)-g(x)<f(x)<g(x),

|f(x)|>g(x)f(x)>g(x)或f(x)<g(x)。

6.指数不等式

7.对数不等式

等,

(1)当时,;

(2)当时,。

8.线性规划

(1)平面区域

一般地二元一次不等式在平面直角坐标系中表示某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,则把直线画成实线

说明:由于直线同侧的所有点的坐标代入,得到实数符号都相同,所以只需在直线某一侧取一个特殊点,从的正负即可判断表示直线哪一侧的平面区域。特别地当时,通常把原点作为此特殊点

(2)有关概念

引例:设,式中变量满足条件,求的最大值和最小值。

由题意变量所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域。由图知原点不在公共区域内,当时,,即点在直线:上,作一组平行于的直线:,,可知:当在的右上方时,直线上的点满足,即,而且,直线往右平移时,随之增大。

由图象可知当直线经过点时,对应的最大,

当直线经过点时,对应的最小,所以,。

在上述引例中,不等式组是一组对变量的约束条件,这组约束条件都是关于的一次不等式,所以又称为线性约束条件。是要求最大值或最小值所涉及的变量的解析式,叫目标函数。又由于是的一次解析式,所以又叫线性目标函数。

一般地求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解和分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!