当前位置:新励学网 > 应试教育 > 高中数学必修4里关于数列各种例题的做法

高中数学必修4里关于数列各种例题的做法

发表时间:2024-07-21 07:24:18 来源:网友投稿

一、

等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:

an=a1+(n-1)d

(1)

前n项和公式为:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

和=(首项+末项)*项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

项数=(末项-首项)/公差+1

例题:已知{an}是等差数列,a2=8,S10=185,从数列中依次取出偶数项组成一个新的数列{bn},求数列{bn}的通项公式

解:(Ⅰ)设{an}首项为a1,公差为d,则

a1+d=8

10(2a1+9d)/2=185,解得

a1=5

d=3

∴an=5+3(n-1),即an=3n+2

(Ⅱ)设b1=a2,b2=a4,b3=a8,

则bn=a2^n

=

3×2^n+2

等比数列

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

(1)等比数列的通项公式是:An=A1*q^(n-1)

(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q)

且任意两项am,an的关系为an=am·qn-m

(3)从等比数列的定义、通项公式、前n项和公式可以推出:

a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)若m,n,p,q∈N*,则有:ap·aq=am·an,

等比中项:aq·ap=2ar

ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

性质:

①若

m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;

②在等比数列中,依次每

k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”.

在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方。

例题:前n项和为s=3^n+a

当a为多少时

an为等比数列

解:

当n>1时,

Sn=3^n+a

Sn-1=3^(n-1)+a

故an=Sn-Sn-1=3^n-3^(n-1)=2*3^(n-1)

所以an应该是以2为首项,3为公比的等比数列,但这是n>1的情况,必须保证n=1也符合上面的通项公式.

所以a1=2*3^0=2……(1)

又S1=a1=3^1+a……(2)

根据(1)(2)式得

a=-1

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!