初中数学有关二次函数压轴题
【1】设抛物线方程的一般式为y=ax^2+bx+c。
A(0,6):y=(0)a+(0)b+c=c=6
B(-3,0):y=(9)a+(-3)b+c=9a-3+c=0
C(6,0):y=(36)a+(6)b+c=36a+6b+c=0
联解得:a=-1/3,b=1,c=6
抛物线方程为:y=-(1/3)x^2+x+6
【2】设P(x,0),麻烦按题意自己作图:P(x,0)及PE//AB交AC于E。
|BC|=9,|AB|=45^.5=3(5^.5),|AC|=72^.5=6(2^.5)
|PE|=|AB|·|PC|/|BC|=(45^.5)(6-x)/9=(5/9)^.5(6-x)
|AE|=|AC|·|BP|/|BC|=(72^.5)(x+3)/9=(8/9)^.5(x+3)
三角形APE面积=|PE|·|AE|·sin(角AEP)=(6-x)(x+3)(40/81)^.5·sin(角AEP)
(三角形APE面积)'=(-2x+3)[(40/81)^.5·sin(角AEP)]=0=>x=1.5
三角形APE面积最大值出现在P(1.5,0)处。最大面积可以由上式算出,但这里可以用几何图形的特殊性得到。P是BC的中点,进而E是AC的中点,所以由(APC)面积=(APB)面积,(APE)面积=(BPE)面积=(ABC)面积/4=(1/2)(9)(6)/4=6.75
【3】设G(x,-(1/3)x^2+x+6),麻烦按题意自己作图:G(x,y)[在抛物线上],连接GA、GC。
直线AC的方程是y=6-x,即x+y-6=0。G到直线AC的垂直距离是:
d=|(x)+(-(1/3)x^2+x+6)+(-6)|/(1+1)^.5
=|-(1/3)x^2+2x|/(2^.5)
于是(AGC)面积是|AC|·d/2=(9/2)|-(1/3)x^2+2x|/(2^.5)
让(AGC)面积=(AEP)面积,即
(9/2)|-(1/3)x^2+2x|/(2^.5)=27/4
求解这个二元一次方程,得两个解:x=3(1+/-0.5),即
在G(3/2,27/4)或G(9/2,15/4)时(AGC)面积=(APE)=27/4
#结束#
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇