当前位置:新励学网 > 考研教学 > 考研高等数学

考研高等数学

发表时间:2024-07-11 08:22:39 来源:网友投稿

令π/4-x=t,则dx=-dt

积分限:x=0,t=π/4;x=π/4,t=0

原式=∫(0,π/4)(π/4-t)dt/[costcos(π/4-t)]

=∫(0,π/4)π/4dt/[costcos(π/4-t)]-∫(0,π/4)tdt/[costcos(π/4-t)]

因为不同的变量并不会影响最终积分值,所以:

∫(0,π/4)tdt/[costcos(π/4-t)]=∫(0,π/4)xdx/[cosxcos(π/4-x)]

则:∫(0,π/4)xdx/[cosxcos(π/4-x)]=1/2∫(0,π/4)π/4dt/[costcos(π/4-t)]

而∫(0,π/4)π/4dt/[costcos(π/4-t)]

=∫(0,π/4)π/4dt/[costcosπ/4cost+sinπ/4sint]

=√2π/4∫(0,π/4)dt/[cost(cost+sint)]

=√2π/4∫(0,π/4)d(tant)/(1+tant)

=√2π/4ln(1+tant)|(0,π/4)

=√2πln2/4

则:∫(0,π/4)xdx/[cosxcos(π/4-x)]=√2πln2/8

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!