当前位置:新励学网 > 考研教学 > 考研数学:求曲线的渐近线条数

考研数学:求曲线的渐近线条数

发表时间:2024-07-20 04:29:30 来源:网友投稿

求渐近线可以依据以下结论:

双曲线两渐近线夹角一半的余弦等于a/c且2c为两焦点的距离,2a为轨迹上的点到焦点的距离差。

若极限

存在且极限lim[f(x)-ax,x→∞]=b也存在,那么曲线y=f(x)具有渐近线y=ax+b。

例:求

渐近线。

解:

(1)x=-1为其垂直渐近线。

(2)即a=1;

即b=-1;

所以y=x-1也是其渐近线。

扩展资料

求一元函数y=f(x)描述的曲线的渐近线的基本思路与步骤:

(1)求出函数的定义域,并明确所有的定义区间的有限边界点xk或分段函数的分界点;

(2)分别判定并计算x趋于正无穷大、趋于负无穷大函数f(x)的极限,判定是否具有水平渐近线;如果极限存在,则水平渐近线方程为y=极限值;水平渐近线的条数可以为0,1,2。

(3)对所有定义区间的xk求或判定左右极限的存在性,如果对于边界点xk左右极限有一个趋于无穷大,或正、负无穷大,则该边界点对应的方程x=xk即为铅直渐近线,铅直渐近线的条数可以为0,1,2,…,无数条。

(4)分别求或判定x趋于正无穷大、趋于负无穷大函数f(x)/x的极限,如果其中极限值存在且不为零,则有对应的斜渐近线,并针对求得的极限值k,求斜渐近线的截距b,即求f(x)-kx的极限,则对应的斜渐近线方程为y=kx+b。斜渐近线的条数可以为0,1,2。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!