当前位置:新励学网 > 考研教学 > 高等代数考研习题求解

高等代数考研习题求解

发表时间:2024-07-20 05:36:14 来源:网友投稿

1.方程化为A^T(AX-B)=0,表示的是A列向量的一个线性组合和B的差要和A列向量张成的列空间正交。这个一定有解,这个解就是B在A列空间上的正交投影。(你的线代书应该有的,因为这就是我线代书上的一道例题)

2.A、B是实对称阵,即它们可对角化。记A的特征向量为a1、a2、……、an,B的特征向量为b1、b2、……、bn。对某一向量e,A+B表示的变换是Ae+Be。又设

ai=ki1b1+ki2b2+……+kin把e表示为A特征向量的线性组合:e=x1a1+x2a2+……+xnan(不小心把字母弄重复了,A、B特征只的最大最小值记成pn、qn,p1、q1吧)。现在你可以利用e关于A特征向量的线性表达式先取A变换,再把结果表示成关B特征向量的线性表达式;然后再利用e关于B的特征向量的表达式取B变换;把得到的结果加起来,再对比变换后的e和原来的e在B的特征向量上的取值。如果我没算错的话,应该就能证明到了。

天晚了(或者说太早了,呵呵),我先睡睡再说。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!