考研高数定积分需要详细的步骤
∫(0,π)x(sinx)^9dx=π/2∫(0,π)(sinx)^9dx
=π∫(0,π/2)(sinx)^9dx
=π8!!/9!!
∫(π/2,π)x(sinx)^9dx
=∫(0,π/2)(x+π/2)(sin(x+π/2))^9dx
=-∫(0,π/2)(x+π/2)(cosx)^9dx
=-∫(0,π/2)x(cosx)^9dx-π/2∫(0,π/2)(cosx)^9dx
=∫(π/2,0)(π/2-x)(sinx)^9dx-π/2∫(0,π/2)(cosx)^9dx
=-∫(0,π/2)(π/2-x)(sinx)^9dx-π/2∫(0,π/2)(cosx)^9dx
=-∫(0,π/2)π/2(sinx)^9dx+∫(0,π/2)x(sinx)^9dx-π/2∫(0,π/2)(cosx)^9dx
=-π/2∫(0,π/2)(sinx)^9dx-π/2∫(0,π/2)(cosx)^9dx+∫(0,π/2)x(sinx)^9dx
=-π/2(2*8!!/9!!)+∫(0,π/2)x(sinx)^9dx
∫(0,π/2)x(sinx)^9dx=∫(0,π)x(sinx)^9dx-∫(π/2,π)x(sinx)^9dx
=π8!!/9!!-[-π/2(2*8!!/9!!)+∫(0,π/2)x(sinx)^9dx]
=2π8!!/9!!-∫(0,π/2)x(sinx)^9dx
∫(0,π/2)x(sinx)^9dx=π8!!/9!!
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇