总体最小二乘法(最小二乘法拟合的基本原理)
最小二乘法的二乘是什么?为什么要二乘
最小二乘法的二乘是什么:简单地说,最小二乘的思想就是要使得观测点和估计点的距离的平方和达到最小.这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小.
总体最小二乘法(最小二乘法拟合的基本原理)
为什么要二乘:因为观测点和估计点之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。
PS:希望会出这道题啦.
最小二乘法和最小二乘估计有啥差别?
最小二乘原理
利用样本回归函数估计总体回归函数,是根据一个给定的包含n组X和Y观测数据的样本,建立样本回归函数,使估计值 尽可能接近观测值Yi。最小二乘原理就是根据使样本剩余的平方和达到最小的准则,确定模型中的参数,建立样本回归函数。
线性最小二乘估计
以误差的平方和最小为准则根据观测数据估计线性模型中未知参数的一种基本参数估计方法。1794年德国数学家C.F.高斯在解决行星轨道预测问题时首先提出最小二乘法。它的基本思路是选择估计量使模型(包括静态或动态的,线性或非线性的)输出与实测输出之差的平方和达到最小。这种求误差平方和的方式可以避免正负误差相抵,而且便于数学处理(例如用误差的绝对值就不便于处理)。
线性最小二乘法是应用最广泛的参数估计方法,它在理论研究和工程应用中都具有重要的作用,同时它又是许多其他更复杂方法的基础。线性最小二乘法是最小二乘法最简单的一种情况,即模型对所考察的参数是线性的。
陈老师,您好!请问最小二乘法和极大似然估计法有什么区别,分别适用于哪些分布?
1、最小二乘法的典型应用是求解一套x和y的成对数据对应的曲线(或者直线)方程。
其思想是:设y和x之间的关系可以用一个公式在表示,但其系数为待定系数。然后,将各个点的实测数据与计算求得的数据相减,得到“误差”或者不符值(有正有负,但其平方都是正的),将这些不符值的平方相加,得到总的“误差”。通过调整公式中的各个系数,使得误差平方和最小,那么就确定了y和x之间的方程的最好结果。求解最小二乘问题的过程中没有提及概率问题。
2、而极大似然估计值,是用于概率领域的一种方法,和最小二乘法是两个领域的。这种方法是应用求极大值的方法,让某一个公式求导值为0,再根据情况判断该极值是否是合乎要求。极大似然估计法可以用于正态分布中 μ, σ2的极大似然估计。也可以用于在类似下面问题中:设箱子中有球,甲箱中有100个红球,2个黑球;乙箱中有1个红球,200个黑球.现随机取出一箱,再从中随机取出一球,结果是红球,人们自然更多地相信这个红球从乙箱取出的。极大似然估计法就是要选取类似的数值作为参数的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
总体最小二乘法的介绍
总体最小二乘法是一种较为先进的最小二乘法结构,总体最小二乘法认为回归矩阵存在干扰,在计算最小二乘解时考虑了这个因素,而在一般最小二乘法时没有考虑该因素的影响。总体最小二乘法应用广泛,得到效果也比较好。
回归方程有a值和r值怎么求y值之和
(要准确,一般都是几条直线)然后求是直线的上还是下,比如说:x-y-1>0,那就先把直线x-y-1=0画出来再代个点(不要是这条直线上的点)进去,比如说(0,0)带进去,得到“0-0-1>0”显然不成立。(0,0)在这条直线的上方,不成立,所以x-y-1>0是代表在直线x-y-1=0的下方的区域。
回归方程求解步骤
x:3,34,5,6
y:2.5,3,4,4.5
先求x、y的平均数x_=(3+4+5+6)/4=9/2,y_=(2.5+3+4+4.5)/4=7/2。
然后求对应的x、y的乘积之和:3*2.5+4*3+5*4+6*4.5=66.5,x_*y_=63/4。
接着计算x的平方之和:9+16+25+36=86,x_^2=81/4。
现在可以计算b了:b=(66.5-4*63/4)/(86-4*81/4)=0.7。
而a=y_-bx_=7/2-0.7*9/2=0.35。
所以回归直线方程为y=bx+a=0.7x+0.35。
线性回归方程方法
1.广义最小二乘法
广义最小二乘法可以用在当观测误差具有异方差或者自相关的情况下。
2.总体最小二乘法
总体最小二乘法用于当自变量有误时。
3.广义线性模式
广义线性模式应用在当误差分布函数不是正态分布时。比如指数分布,伽玛分布,逆高斯分布,泊松分布,二项式分布等。
4.稳健回归
稳健回归是将平均绝对误差最小化,不同于在线性回归中是将均方误差最小化。
什么是最小二乘法回归分析?
所谓回归分析实际上就是根据统计数据建立一个方程,用这个方程来描述不同变量之间的关系,而这个关系又无法做到想像函数关系那样准确,因为即使你重复全部控制条件,结果也还有区别,这时通过让回归方程计算值和试验点结果间差值的平方和最小来建立回归方程的办法就是最小二乘法,二乘的意思就是平方。最小二乘就是指回归方程计算值和实验值差的平方和最小。
最小二乘法公式怎么求?
最小二乘法公式是一个数学的公式,在数学上称为曲线拟合,此处所讲最小二乘法,专指线性回归方程!最小二乘法公式为a=y(平均)-b*x(平均)。
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
扩展资料:
普通最小二乘估计量具有上述三特性:
1、线性特性
所谓线性特性,是指估计量分别是样本观测值的线性函数,亦即估计量和观测值的线性组合。
2、无偏性
无偏性,是指参数估计量的期望值分别等于总体真实参数。
3、最小方差性
所谓最小方差性,是指估计量与用其它方法求得的估计量比较,其方差最小,即最佳。最小方差性又称有效性。这一性质就是著名的高斯一马尔可夫( Gauss-Markov)定理。这个定理阐明了普通最小二乘估计量与用其它方法求得的任何线性无偏估计量相比,它是最佳的。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇