当前位置:新励学网 > 秒知问答 > 负定矩阵的判定方法

负定矩阵的判定方法

发表时间:2024-05-28 18:25:58 来源:网友投稿

实对称矩阵A是负定的,如果二次型f(x1,x2,xn)=X'AX负定。矩阵负定的充分必要条件是它的特征值都小于零。若矩阵A是n阶负定矩阵,则A的偶数阶顺序主子式大于0,奇数阶顺序主子式小于0。负定矩阵是矩阵类中的一种特殊矩阵,它在矩阵理论中占有重要地位。

矩阵与方程组、行列式联系紧密,又是与自然科学和工程技术相关的数学应用的内容,矩阵变换是基本的数学方法,矩阵在数学中,乃至其他学科中应用广泛。负定矩阵是矩阵类中的一种特殊矩阵,它在矩阵理论中占有重要地位。负定矩阵可以看成是与正定矩阵对应的概念,负定矩阵与正定矩阵有着许多相似的性质。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!