当前位置:新励学网 > 秒知问答 > 如何证明周长相同的封闭图形中圆的面积最大如题

如何证明周长相同的封闭图形中圆的面积最大如题

发表时间:2024-07-08 01:35:44 来源:网友投稿

圆面积最大1.周长为L(常数)的矩形中正方形面积最大.证明:设矩形长为x,则宽为(L-2x)/2=(L/2-x)面积y=x*(L/2-x)=-x^2+Lx/2,这个二次函数在x=L/4时有最大值∴矩形长L/4,宽为(L-2x)/2=(L/2-x)=L/4,∴矩形中正方形面积最大http://zhidao.baidu.com/question/19315644.html2.奇妙的证明:周长相等的所有平面图形中,圆的面积最大.我首先要证明,面积最大的图形满足一个性质:一条平分周长的直线(暂且把它叫做周长平分线),一定也平分面积.因为,如果不平分面积的话,那么我总可以把面积较大的那块翻到另一边去,使得周长不变,而面积增大(如左图,红色曲线围成的面积大于蓝色曲线).好了,接下来,我要再证明面积最大的图形满足第二条性质:周长平分线与曲线的两个交点和曲线上任意一点构成的三角形,必然是直角三角形.因为,如果它不是直角三角形,我可以把他拉伸或压缩一下,使它成为直角三角形,这样新三角形的面积大于原三角形的面积(证明省略,主要使用S=absinθ/2),而图形其他部分面积不变,这样面积就扩大了.因此面积最大的图形满足上述两条性质,我们就不难推出它是圆了

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!