初三数学因式分解法
初三数学因式分解法篇1 许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法。而在竞赛上又有拆项和添项法,待定系数法,双十字相乘法,轮换对称法等。把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:
1、提公因法
如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x-2x-x(2003淮安市中考题)解:x-2x-x=x(x-2x-1)
2、应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a+4ab+4b(2003南通市中考题)解:a+4ab+4b=(a+2b)
3、分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m+5n-mn-5m解:m+5n-mn-5m=m-5m-mn+5n=(m-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)
4、十字相乘法
对于mx+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x2-19x-6分析:1-372
2-21=-19
解:7x2-19x-6=(7x+2)(x-3)
5、配方法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x2+3x-40解x2+3x-40=x+3x+()-()-40=(x+)-()=(x++)(x+-)=(x+8)(x-5)
6、拆、添项法
可以把多项式拆成若干部分,再用进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)
7、换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
例7、分解因式2x2-x-6x-x+2
解:2x-x-6x-x+2=2(x+1)-x(x+1)-6x=x[2(x+)-(x+)-6
令y=x+,x[2(x+)-(x+)-6=x[2(y-2)-y-6]=x(2y-y-10)=x(y+2)(2y-5)=x(x++2)(2x+-5)=(x+2x+1)(2x-5x+2)=(x+1)(2x-1)(x-2)
8、求根法
令多项式f(x)=0,求出其根为x,x,x,……x,则多项式可因式分解为f(x)=(x-x)(x-x)(x-x)……(x-x)
例8、分解因式2x+7x-2x-13x+6解:令f(x)=2x+7x-2x-13x+6=0
通过综合除法可知,f(x)=0根为,-3,-2,1则2x+7x-2x-13x+6=(2x-1)(x+3)(x+2)(x-1)
9、图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x,x,x,……x,则多项式可因式分解为f(x)=f(x)=(x-x)(x-x)(x-x)……(x-x)
例9、因式分解x+2x-5x-6解:令y=x+2x-5x-6
作出其图象,见右图,与x轴交点为-3,-1,2则x+2x-5x-6=(x+1)(x+3)(x-2)
10、主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
例10、分解因式a(b-c)+b(c-a)+c(a-b)
分析:此题可选定a为主元,将其按次数从高到低排列
解:a(b-c)+b(c-a)+c(a-b)=a(b-c)-a(b-c)+(bc-cb)=(b-c)[a-a(b+c)+bc]=(b-c)(a-b)(a-c)
11、利用特殊值法
将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例11、分解因式x+9x+23x+15
解:令x=2,则x+9x+23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x+9x+23x+15=(x+1)(x+3)(x+5)
12、待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例12、分解因式x-x-5x-6x-4
分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
解:设x-x-5x-6x-4=(x+ax+b)(x+cx+d)=x+(a+c)x+(ac+b+d)x+(ad+bc)x+bd所以解得
则x-x-5x-6x-4=(x+x+1)(x-2x-4)
初三数学因式分解法篇2 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
1、运用公式法
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,
例如:
(1)a2-b2=(a+b)(a-b);
(2)a2±2ab+b2=(a±b)2;
(3)a3+b3=(a+b)(a2-ab+b2);
(4)a3-b3=(a-b)(a2+ab+b2)。
下面再补充几个常用的公式:
(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;
(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;
(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数。
运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式。
例1分解因式:a3+b3+c3-3abc。
本题实际上就是用因式分解的方法证明前面给出的公式(6)。
分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3
的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b)。
这个公式也是一个常用的公式,本题就借助于它来推导。
解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)
=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)。
2、拆项、添项法
因式分解是多项式乘法的逆运算。在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零。在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项。拆项、添项的目的是使多项式能用分组分解法进行因式分解。
例2分解因式:x3-9x+8。
分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧。
解法1将常数项8拆成-1+9。
原式=x3-9x-1+9
=(x3-1)-9x+9
=(x-1)(x2+x+1)-9(x-1)
=(x-1)(x2+x-8)。
解法2将一次项-9x拆成-x-8x。
原式=x3-x-8x+8
=(x3-x)+(-8x+8)
=x(x+1)(x-1)-8(x-1)
=(x-1)(x2+x-8)。
解法3将三次项x3拆成9x3-8x3。
原式=9x3-8x3-9x+8
=(9x3-9x)+(-8x3+8)
=9x(x+1)(x-1)-8(x-1)(x2+x+1)
=(x-1)(x2+x-8)。
解法4添加两项-x2+x2。
原式=x3-9x+8
=x3-x2+x2-9x+8
=x2(x-1)+(x-8)(x-1)
=(x-1)(x2+x-8)。
说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种。
3、换元法
换元法指的'是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰。例3分解因式:(x2+x+1)(x2+x+2)-12。
分析将原式展开,是关于x的四次多项式,分解因式较困难。我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了。
解设x2+x=y,则
原式=(y+1)(y+2)-12=y2+3y-10
=(y-2)(y+5)=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)。
说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试。
4、双十字相乘法
分解二次三项式时,我们常用十字相乘法。对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式。
例如,分解因式2x2-7xy-22y2-5x+35y-3。我们将上式按x降幂排列,并把y当作常数,于是上式可变形为
2x2-(5+7y)x-(22y2-35y+3),
可以看作是关于x的二次三项式。
对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;
(2y-3)(-11y+1)=-22y2+35y-3。这就是所谓的双十字相乘法。
用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:
(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);
(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx。
例4分解因式:
x2-3xy-10y2+x+9y-2解:
原式=(x-5y+2)(x+2y-1)
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,
例如:(1)a2-b2=(a+b)(a-b);
(2)a2±2ab+b2=(a±b)2;
(3)a3+b3=(a+b)(a2-ab+b2);
(4)a3-b3=(a-b)(a2+ab+b2)。
下面再补充几个常用的公式:
(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;
(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;
(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数。
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,
例如:(1)a2-b2=(a+b)(a-b);
(2)a2±2ab+b2=(a±b)2;
(3)a3+b3=(a+b)(a2-ab+b2);
(4)a3-b3=(a-b)(a2+ab+b2)。
下面再补充几个常用的公式:
(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;
(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;
(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇