当前位置:新励学网 > 秒知问答 > 如何求函数的最大值和最小值

如何求函数的最大值和最小值

发表时间:2024-07-08 22:28:05 来源:网友投稿

先求导然后让导数等于0,得出可能极值点,然后通过判断导数的正负来判断单调性,最后再得出极值,然后再计算端点值,比较大小,最大就是最大值,最小就是最小值。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。但是可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。

扩展资料:

极值是一个函数的极大值或极小值。如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。

函数的极值通过其一阶和二阶导数来确定。对于一元可微函数f(x),它在某点x0有极值的充分必要条件是f(x)在x0的某邻域上一阶可导,在x0处二阶可导,且f'(X0)=0,f(x0)≠0,那么:

1)若f(x0)<0,则f在x0取得极大值;

2)若f(x0)>0,则f在x0取得极小值。

一般的函数最值分为函数最小值与函数最大值。

最小值:设函数y=f(x)的定义域为I,如果存在实数M满足:

①对于任意实数x∈I,都有f(x)≥M。

②存在x0∈I。

使得f(x0)=M,那么我们称实数M是函数y=f(x)的最小值。

最大值:设函数y=f(x)的定义域为I,如果存在实数M满足:

①对于任意实数x∈I,都有f(x)≤M。

②存在x0∈I。

使得f(x0)=M,那么我们称实数M是函数y=f(x)的最大值。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!