当前位置:新励学网 > 秒知问答 > 平方求和公式急

平方求和公式急

发表时间:2024-07-11 00:51:22 来源:网友投稿

平方和公式n(n+1)(2n+1)/6

即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6(注:N^2=N的平方)

证明1+4+9+…+n^2=N(N+1)(2N+1)/6

证法一(归纳猜想法):

1、N=1时,1=1(1+1)(2×1+1)/6=1

2、N=2时,1+4=2(2+1)(2×2+1)/6=5

3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6

则当N=x+1时,

1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2

=(x+1)[2(x2)+x+6(x+1)]/6

=(x+1)[2(x2)+7x+6]/6

=(x+1)(2x+3)(x+2)/6

=(x+1)[(x+1)+1][2(x+1)+1]/6

也满足公式

4、综上所述平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证.

证法二(利用恒等式(n+1)^3=n^3+3n^2+3n+1):

(n+1)^3-n^3=3n^2+3n+1,

n^3-(n-1)^3=3(n-1)^2+3(n-1)+1

.

3^3-2^3=3*(2^2)+3*2+1

2^3-1^3=3*(1^2)+3*1+1.

把这n个等式两端分别相加,得:

(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,

由于1+2+3+...+n=(n+1)n/2,

代人上式得:

n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n

整理后得:

1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!