当前位置:新励学网 > 秒知问答 > 泰勒公式怎么证明呀

泰勒公式怎么证明呀

发表时间:2024-07-11 04:13:56 来源:网友投稿

泰勒中值定理证明:

若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和。

f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn。

其中Rn=f(n+1)(ξ)/(n+1)!•(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。(注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘)。

证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0f(x.+Δx)-f(x.)=f'(x.)Δx)。

其中误差α是在limΔx→0即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确。

于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n。

来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.)。

于是可以依次求出A0、A1、A2、……、An。显然P(x.)=A0,所以A0=f(x.)。

P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。

至此多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2+……+f(n)(x.)/n!•(x-x.)^n。

麦克劳林展开式的应用:

1、展开三角函数y=sinx和y=cosx。

解:根据导数表得:f(x)=sinx,f'(x)=cosx,f''(x)=-sinx,f'''(x)=-cosx,f(4)(x)=sinx。

于是得出了周期规律。分别算出f(0)=0,f'(0)=1,f''(x)=0,f'''(0)=-1,f(4)=0。

最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了)。

类似地可以展开y=cosx。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!