当前位置:新励学网 > 秒知问答 > 去绝对值的方法是什么

去绝对值的方法是什么

发表时间:2024-07-11 16:39:29 来源:网友投稿

1、对于形如︱a︱的一类问题

当a>0时,︱a︱=a(性质1,正数的绝对值是它本身);

当a=0时︱a︱=0(性质2,0的绝对值是0);

当a<0时;︱a︱=_a(性质3,负数的绝对值是它的相反数)。

2、对于形如︱a+b︱的一类问题

只要把a+b看作是一个整体,判断出a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号,正确进行化简。

当a+b>0时,︱a+b︱=a+b(性质1,正数的绝对值是它本身);

当a+b=0时,︱a+b︱=0(性质2,0的绝对值是0);

当a+b<0时,︱a+b︱=_(a+b)=_a-b

3、对于形如︱a-b︱的一类问题

同样按上面的方法,我们仍然把a-b看作一个整体,判断出a-b的3种情况,根据绝对值的3个性质,去掉绝对值符号。

但在去括号时最容易出现错误。如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可。因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=a-b,︱b-a︱=a-b.请记住口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小。

扩展资料

运用:

已知|x+2|+|1-x|=9-|y-5|-|1+y|,求x+y最大值与最小值.

解:原方程变形得|x+2|+|x-1|+|y-5|+|y+1||=9,

∵|x+2|+|x-1|≥3,|y-5|+|y+1|≥6,

而|x+2|+|x-1|+|y-5|+|y+1|=9,

∴|x+2|+|x-1|=3,|y-5|+|y+1|=6,

∴-2≤x≤1,-1≤y≤5,

故x+y的最大值与最小值分别为6和-3.

2、等式|x+2|+|x-3|>5的解集是x<-2或x>3。

解:由绝对值的几何意义知,|x+2|+|x-3|的最小值为5,

此时x在-2~3之间(包括两端点)取值,若|x+2|+|x-3|>5成立,

则x必在-2的左边或3的右边取值,

故原不等式的解集为x<-2或x>3.

3、|x-2|-|x-5|的最大值是3,最小值是-3。

解:把数轴上表示x的点记为P.

由绝对值的几何意义知,|x-2|-|x-5|表示数轴上的一点到表示数2和5两点的距离的差,

当P点在2的左边时,其差恒为-3;

当P点在5的右边时,其差恒为3;当P点在2~5之间(包括这两个端点)时,其差在-3~3之间(包括这两个端点),因此|x-2|-|x-5|的最大值和最小值分别为3和-3.

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!