当前位置:新励学网 > 秒知问答 > 怎样用微积分证明定积分等于不定积分

怎样用微积分证明定积分等于不定积分

发表时间:2024-07-12 01:07:54 来源:网友投稿

令x=sint

x:0→1,则t:0→π/2

∫[0:1]√(1-x²)dx

=∫[0:π/2]√(1-sin²t)d(sint)

=∫[0:π/2]cos²tdt

=½∫[0:π/2](1+cos2t)dt

=(½t+¼sin2t)|[0:π/2]

=[½·(π/2)+¼sinπ]-(½·0+¼sin0)

=π/4

扩展资料:

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!