当前位置:新励学网 > 秒知问答 > 数学的“全排列”是什么意思

数学的“全排列”是什么意思

发表时间:2024-07-12 01:16:47 来源:网友投稿

全排列是从从N个元素中取出M个元素,并按照一定的规则将取出元素排序,我们称之为从N个元素中取M个元素的一个排列,当M=N时,即从N个元素中取出N个元素的排列。

显然选取的规则不同,排序的结果也不同,则可以得到不同的排列。

以最常见的全排列为例,用S(A)表示集合A的元素个数。用1、2、3、4、5、6、7、8、9组成数字不重复的九位数。

则每一个九位数都是集合A的一个元素,集合A中共有9!个元素,即S(A)=9!如果集合A可以分为若干个不相交的子集,则A的元素等于各子集元素之和。

扩展资料

我们以集合A={a,b,c}为例,按顺序列举出其全排列:

A1={a,b,c},A2={a,c,b},A3={b,a,c},A4={b,c,a},A5={c,a,b},A6={c,b,a},

N个元素的全排列的个数为N。

递归与非递归的方法解决全排列问题:

1、全排列就是从第一个数字起每个数分别与它后面的数字交换。

2、去重的全排列就是从第一个数字起每个数分别与它后面非重复出现的数字交换。

3、全排列的非递归就是由后向前找替换数和替换点,然后由后向前找第一个比替换数大的数与替换数交换,最后颠倒替换点后的所有数据。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!