当前位置:新励学网 > 秒知问答 > 一元三次不等式穿针引线法

一元三次不等式穿针引线法

发表时间:2024-07-12 08:28:14 来源:网友投稿

一元三次不等式穿针引线法如下:

穿针引线法又称“数轴穿根法”或“数轴标根法”,一般用于解简单的高次不等式,有的时候还可以用来判断零点或者极值、拐点等,比如(x-1)(x-2)^2(x+2)^3<0。

为了形象地体现正负值的变化规律,可以画一条浪线从右上方依次穿过每一根所对应的点,穿过最后一个点后就不再变方向,这种画法俗称“穿针引线法”。

使用步骤:

1、先将不等式写成等式的形式(x-1)(x-2)^2(x+2)^3=0

得出它有3个根,x=1,x=2,x=-2,其中x=2是二重根

2、以数轴为标准,在数轴上标出它的根,然后从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。

对于三次及以上的多项式,若是能够分解成几个因式相乘的形式,也能够通过穿针引线法很容易的看出根的分布,单调性和极值。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!